Publications by authors named "Zebulon G Schichtl"

Solar fuel generation through water electrolysis or electrochemical CO reduction is thermodynamically limited when it is paired with oxygen evolution reaction (OER). Glycerol electrooxidation reaction (GEOR) is an alternative anodic reaction with lower anodic electrochemical potential that utilizes a renewable coproduct produced during biodiesel synthesis. We show that GEOR on an Au-Pt-Bi ternary metal electrocatalyst in a model alkaline crude glycerol solution can provide significant cell potential reductions even when paired to reduction reactions in seawater and acidic catholytes via a bipolar membrane (BPM).

View Article and Find Full Text PDF

A nanowire photoanode SrTaON, a semiconductor suitable for overall water-splitting with a band gap of 2.3 eV, was coated with functional overlayers to yield a core-shell structure while maintaining its one-dimensional morphology. The nanowires were grown hydrothermally on tantalum, and the perovskite-related oxynitride structure was obtained by nitridation.

View Article and Find Full Text PDF

Transparent, conductive coatings on porous, three-dimensional materials are often used as the current collector for photoelectrode designs in photoelectrochemical applications. These structures allow for improved light trapping and absorption in chemically synthesized, photoactive overlayers while minimizing parasitic absorption in the current collecting layer. Atomic layer deposition (ALD) is particularly useful for fabricating transparent conducting oxides (TCOs) like Sn-doped InO (ITO) and Al-doped ZnO (AZO) for structured materials because the deposition is specific to exposed surfaces.

View Article and Find Full Text PDF

Semiconductor-liquid junctions are ubiquitous in photoelectrochemical approaches to artificial photosynthesis. By analogy with the antennae and reaction centers in natural photosynthetic complexes, separating the light-absorbing semiconductor and electrocatalysts can improve catalytic efficiency. A catalytic layer can also impair the photovoltage-generating energetics of the electrode without appropriate microscopic organization of catalytically active area on the surface.

View Article and Find Full Text PDF