To reveal the mechanisms of enhanced biological nitrogen and phosphorus removal by denitrifying phosphorus removal in a Micro-pressure swirl reactor (MPSR), this study used a MPSR to treat municipal wastewater and enriched denitrifying phosphate accumulating organisms (DPAOs) by using its alternating anaerobic-anoxic-aerobic environment. The coupling of denitrification phosphorus removal (DPR) and simultaneous nitrification endogenous denitrification phosphorus removal (SNEDPR) was achieved in MPSR, and the average removal rates of COD, NH-N, TN and TP were 91.57%, 98.
View Article and Find Full Text PDFTo solve the deterioration of effluent caused by low temperature in urban sewage treatment plant in cold areas, a new type of reactor was proposed, the biochemical environmental and low-temperature operating characteristics of the reactor were studied. Through analysis of flow simulation and dissolved oxygen (DO) distribution when the aeration rate was 0.6 m/h, it showed that there were many different DO environments in the reactor at the same time, which provided favourable conditions for various biochemical reactions.
View Article and Find Full Text PDFA micro-pressure swirl reactor (MPSR) was developed for carbon and nitrogen removal of wastewater, in which dissolved oxygen (DO) gradient and internal circulation could be created by setting the aerators along one side of the reactor, and micro-pressure could be realized by sealing most of the top cap and increasing the outlet water level. In this study, velocity and DO distribution in the reactor was measured, removal performance treating high-concentration wastewater was investigated, and the main functional microorganisms were analyzed. The experiment results indicated that there was stable swirl flow and spatial DO gradient in MPSR.
View Article and Find Full Text PDFBioresour Technol
January 2021
This study aimed to propose a new type of micro-pressure swirl reactor (MPSR) to treat urban sewage. The MPSR could form a stable swirl in the reactor, and realized the coexistence of anaerobic, anoxic, and aerobic zones in a single aeration tank. The pilot study showed that MPSR achieved high removal efficient of SS, COD, NH-N, TN, TP under the conditions of drastic fluctuation in influent quality and temperature, and the average removal rate were 88.
View Article and Find Full Text PDFTo explore the influence of the influent flow distribution ratio on the denitrification efficiency of low-temperature urban wastewater and analyze the denitrification of multi-level AO coupled flow biochemical process, three-level AO-coupled biofilm technology was used to treat simulated low-C/N urban sewage at a temperature of 10℃±1℃, hydraulic retention time of 8 h, and constant air-water ratio. The reactors were operated under three conditions of inlet water ratios of 5:4:4 (equal volume load), 3:2:1 (equal hydraulic retention time), and 25:15:6 (equal sludge load). The study showed that the multi-level AO-coupled displacement biochemical process has a good removal efficiency with respect to low-temperature and low-C/N wastewater.
View Article and Find Full Text PDF