2D nonlayered materials (NLMs) have garnered considerable attention due to unique surface structure and bright application prospect. However, owing to the strong interatomic forces caused by intrinsic isotropic chemical bonds in all directions, the direct synthesis of ultrathin and large area 2D NLMs remains a tremendous challenge. Here, the surface-assisted passivation growth strategy is designed to synthesize ultrathin and large size β-BiO crystals with the thickness down to 0.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
The transfer-free character of graphene growth on Silicon Carbide (SiC) makes it compatible with state-of-the-art Si semiconductor technologies for directly fabricating high-end electronics. Although significant progress has been achieved in epitaxial growth of graphene on SiC recently, the underlying nucleation mechanism remains elusive. Here, we present a theoretical study to elucidate graphene near-equilibrium nucleation on Si-terminated hexagonal-SiC(0001) surface.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2024
In this work, Fe-BHT is identified as the most efficient catalyst for the hydrogen evolution reaction (HER) among the TM-BHTs (TM = Sc, Ti, V, Cr, Mn, Fe, Co, and Ni), with an overpotential as low as 0.09 V. It is found that Fe d orbitals do not participate in the bonding with surrounding S/N atoms in the FeX active center but are bonding states for hydrogen adsorption.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2020
Lithium-rich phosphides have recently attracted considerable attention due to their potential application as high-capacity and high-rate anodes for lithium-ion batteries (LIBs). However, there is still short of the promising candidate thus far because of the poor electrical conductivity or huge volume change in the already known Li-P compounds. In this work, we report two novel Li-P states, LiP and LiP, stabilized under high pressures that are predicted to be quenchable down to ambient conditions by first-principles swarm structure calculations.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
April 2016
Ag@SiO2/LaF3:Eu3+ core-shell nanostructure was synthesized with a wet chemical method in which the SiO2 layer functioned as a separation layer between Ag-core and LaF3:Eu3+ luminescence material. With this system, surface enhanced luminescene of LaF3:Eu3+ with Ag substrate was investigated, and an obvious enhancement effect was observed. The dependence of the luminescence enhancement on the distance between the luminescence shell and the metallic core was studied too.
View Article and Find Full Text PDFAn effective substrate for surface-enhanced fluorescence, which consists of cluster Ag/Au bimetallic nanostructures on a copper surface, was synthesized via a multi-stage galvanic replacement reaction of a Ag cluster in a chlorauric acid (HAuCl4) solution at room temperature. The fabricated silver/gold bimetallic cluster were found to yield large surface-enhanced fluorescence (SEF) enhancement factors for rhodamine 6G probe molecules deposited on the substrate, and also the fluorescence efficiency is critically dependent on the period of nanostructure growth. With the help of proper control reaction conditions, such as the reaction time, and concentration of reaction solutions, the maximum fluorescence enhanced effect was obtained.
View Article and Find Full Text PDF