Publications by authors named "Zeb Krix"

The highly tunable band structure of the zero-energy Landau level (zLL) of bilayer graphene makes it an ideal platform for engineering novel quantum states. However, the zero-energy Landau level at high electric fields has remained largely unexplored. Here we present magnetotransport measurements of bilayer graphene in high transverse electric fields.

View Article and Find Full Text PDF

Imposing an external periodic electrostatic potential to the electrons confined in a quantum well makes it possible to engineer synthetic two-dimensional band structures, with electronic properties different from those in the host semiconductor. Here we report the fabrication and study of a tunable triangular artificial lattice on a GaAs/AlGaAs heterostructure where it is possible to transform from the original GaAs band structure and a circular Fermi surface to a new band structure with multiple artificial Fermi surfaces simply by altering a gate bias. For weak electrostatic modulation magnetotransport measurements reveal multiple quantum oscillations and commensurability oscillations due to the electron scattering from the artificial lattice.

View Article and Find Full Text PDF

Phonon-polaritons (PhPs) arise from the strong coupling of photons to optical phonons. They offer light confinement and harnessing below the diffraction limit for applications including sensing, imaging, superlensing, and photonics-based communications. However, structures consisting of both suspended and supported hyperbolic materials on periodic dielectric substrates are yet to be explored.

View Article and Find Full Text PDF