Extracellular vesicles (EVs) play a crucial role in diagnosis and treatment, yet obtaining highly purified EVs from complex biological samples is often hindered by nanoscale contaminants. In this work, considering the charge-to-size characteristics of EVs, a circular multicavity electrophoresis (CME) with gradient pore size distribution was constructed in the gradient electric field to realize the isolation and preparation of EVs. By the gradient gel sieving effect, small cell debris, EVs, and proteins in biological samples were gradually separated.
View Article and Find Full Text PDFActa Biochim Biophys Sin (Shanghai)
January 2025
Reactivating the embryonic ζ-globin gene represents a potential therapeutic approach to ameliorate the severe clinical phenotype of α-thalassemia and sickle cell disease. The transcription factor MYB has been extensively proven to be a master regulator of the γ-globin gene, but its role in the regulation of ζ-globin remains incompletely understood. Here, we report a mechanistic study on the derepression of ζ-globin both and .
View Article and Find Full Text PDFEsophageal squamous cell carcinoma (ESCC) accounts for about 90% of esophageal cancer cases. The lack of effective therapeutic targets makes it difficult to improve the overall survival of patients with ESCC. Reticulon 4 Interacting Protein 1 (RTN4IP1) is a novel mitochondrial oxidoreductase.
View Article and Find Full Text PDFThe regulation of the charged microenvironment around implants is an effective way to promote osseointegration. Although homeostasis of the charged microenvironment plays an integral role in tissues, current research is externally invasive and unsuitable for clinical applications. In this study, functional materials with different surface potential differences are prepared by changing the spatial layout of Ta and Ag on the surface of a Ti-6Al-4V alloy (TC4).
View Article and Find Full Text PDFPlant Biotechnol J
January 2025
The husk leaf of maize (Zea mays) encases the ear as a modified leaf and plays pivotal roles in protecting the ear from pathogen infection, translocating nutrition for grains and warranting grain yield. However, the natural genetic basis for variation in husk leaf width remains largely unexplored. Here, we performed a genome-wide association study for maize husk leaf width and identified a 3-bp InDel (insertion/deletion) in the coding region of the nitrate transporter gene ZmNRT2.
View Article and Find Full Text PDFGlycosite-specific antibody-drug conjugates (gsADCs), which carry cytotoxic payloads at the conserved -glycosylation site, N297, of an IgG, have emerged as a promising ADC format with better therapeutic index. Conjugating the payloads aldehyde-based chemistry is more friendly to IgGs, and has been widely investigated. However, the efficiency of introducing an aldehyde tag at the N297 site is poor due to the complicated procedures required, such as the multiple-enzyme-catalyzed IgG glycoengineering process and the successive oxidation step, which always results in heterogeneous products and poor stability.
View Article and Find Full Text PDFOrganic-inorganic formamidinium lead triiodide (FAPbI) hybrid perovskite quantum dots (QDs) have garnered considerable attention in the photovoltaic field due to their narrow bandgap, exceptional environmental stability, and prolonged carrier lifetime. Unfortunately, their insulating ligands and surface vacancy defects pose significant obstacles to efficient charge transfer across device interfaces. In this work, an electrostatic harmonization strategy at the interface using a donor-acceptor dipole molecular attachment to achieve enhanced charge separation capabilities on the QD surface is ventured.
View Article and Find Full Text PDFBackground: Atezolizumab plus bevacizumab has shown promising efficacy in advanced mucosal melanoma in the multi-centre phase II study. This report updates 3-year survival outcomes and multi-omics analysis to identify potential response biomarkers.
Methods: Forty-three intention-to-treat (ITT) patients received intravenous administration of atezolizumab and bevacizumab every 3 weeks.
Korean J Physiol Pharmacol
January 2025
Melittin (MEL) is the main bioactive component of bee venom and has been reported to have various pharmacological effects. This study investigates the protective effect of MEL on MPP-injured HT22 cells and the possible mechanisms involved. We treated the cells with 4 mM MPP for 24 h to induce a cellular injury model.
View Article and Find Full Text PDFRecent Pat Anticancer Drug Discov
January 2025
Background: Lysyl oxidase-like 2 (LOXL2) is a metalloenzyme that catalyzes oxidative deamination ε-amino group of lysine. It has been found that LOXL2 is a promotor for the metastasis and invasion in kinds of tumors. Previous studies show that disulfide bonds are important components in LOXL2, and their bioactivity can be regulated by those bonds.
View Article and Find Full Text PDFIntroduction: Mucinous Cystadenocarcinoma (MCA) of the breast remains a relatively rare condition, and to date, there is no systematic summary of its imaging manifestations. Therefore, this report presents a detailed account of the diagnosis and treatment of mucinous cystadenocarcinoma in a 40-year-old woman, with a particular focus on imaging findings. Additionally, we conducted a comprehensive literature review on this disease and summarized its key imaging features.
View Article and Find Full Text PDFObjective: This prospective study aimed to establish the typical viscosity range of the thyroid gland in healthy individuals using a new method called the Sound Touch Viscosity (STVi) technique with a linear array transducer.
Methods: Seventy-eight healthy volunteers were enrolled between March, 2023 and April, 2023. Thyroid viscosity was measured using the Resona R9 ultrasound system equipped with a linear array transducer (L15-3WU).
Background: Early and timely detection of pulmonary nodules and initiation treatment can substantially improve the survival rate of lung carcinoma. However, current detection methods based on convolutional neural networks (CNNs) cannot easily detect pulmonary nodules owing to low detection accuracy and the difficulty in detecting small-sized pulmonary nodules; meanwhile, more accurate CNN-based models are slow and require high hardware specifications.
Objective: The aim of this study is to develop a detection model that achieves both high accuracy and real-time performance, ensuring effective and timely results.
Given the adverse effects faced by rice due to abiotic stresses, the precise and rapid identification of single nucleotide polymorphisms (SNPs) associated with abiotic stress traits (ABST-SNPs) in rice is crucial for developing resistant rice varieties. The scarcity of high-quality data related to abiotic stress in rice has hindered the development of computational models and constrained research efforts aimed at rice improvement and breeding. Genome-wide association studies provide a better statistical power to consider ABST-SNPs in rice.
View Article and Find Full Text PDFTwo-dimensional layered structural materials exhibit a wide range of properties due to their ultrahigh specific surface area. However, achieving ordered exfoliation to obtain uniform two-dimensional structures remains challenging. In this study, we developed a supramolecular system by covalently bonding hexathiobenzene (HB) into β-cyclodextrin to create a light-responsive moiety, followed by coassembly with bipyridine and nickel ions to form a polypseudorotaxane (PR) system, which enables an light-induced exfoliation strategy for two-dimensional materials.
View Article and Find Full Text PDFThe gastric mucosal barrier, through its gastric pits, serves as a pathway for secretions, ensuring that mucus produced by the gastric glands is transferred to the gastric lumen, providing stable protection. Here a bioinspired liquid pockets material is shown, composed of a thermo-driven hydrogel that acts as an external activation unit to release interflowing liquid responsively, and porous matrices that serve as interconnected pockets to transfer it, enabling controlled internal flow and adaptive barrier functionality. Experiments and theoretical analysis demonstrate the stability and regulatory mechanisms of these liquid pockets, based on the interconnected pockets between the external activation unit and internal fluid flow.
View Article and Find Full Text PDFBiofouling on polymeric membranes poses a significant challenge in protein production and separation processes. We report here on the use of zwitterionic peptides composed of alternating lysine (K) and glutamic acid (E) residues to reduce biomolecular fouling on gold substrates and polymeric membranes within a protein production-mimicking environment. Our findings demonstrate that both gold chips and polymeric membranes functionalized with longer sequence zwitterionic peptides, along with a hydrophilic linker, exhibit superior antifouling performance across various protein-rich environments.
View Article and Find Full Text PDFBackground: Breast cancer (BC) is the most prevalent solid cancer affecting women's health globally. Matrine (MAT), a traditional Chinese herb, has exhibited antitumor effects against BC. However, its mechanism of action, particularly whether it involves the control of cell proliferation and epithelial-mesenchymal transition (EMT), remains unknown.
View Article and Find Full Text PDFSerum is one of the most commonly used biofluids for biomarker exploration. Some studies examine serum directly, while others focus on specific components like small extracellular vesicles (sEVs), which are lipid-bilayer encapsulated particles carrying a variety of molecular cargos. However, the diagnostic value of serum sEVs versus sEVs-depleted fractions (EV-free serum) for early cancer detection are unclear.
View Article and Find Full Text PDFElastomer cure shrinkage during composite fabrication often induces wrinkling in conductive networks, significantly affecting the performance of flexible strain sensors, yet the specific roles of such wrinkles are not fully understood. Herein, a highly sensitive polydimethylsiloxane-filled graphene woven fabric (PDMS-f-GWF) strain sensor by optimizing the PDMS cure shrinkage through careful adjustment of the base-to-curing-agent ratio is developed. This sensor achieves a gauge factor of ∼700 at 25% strain, which is over 6 times higher than sensors using commercially formulated PDMS.
View Article and Find Full Text PDFCisplatin (CIS) is a broad-spectrum anticancer drug widely used in the clinic; however, one of its side effects is that it can cause intestinal damage such as loss of appetite, vomiting, and diarrhea in patients. Epigallocatechin gallate (EGCG) is one of the main active substances in green tea, which has the effects of antitumor multiple drug resistance, antioxidation, and antiinflammatory properties. The aim of this study was to explore the protective effect of EGCG on CIS-induced intestinal injury in rats.
View Article and Find Full Text PDFBottlebrush polymers (BBPs) have garnered significant attention as advanced drug delivery systems, capable of transporting a diverse range of therapeutic agents, including both chemical drugs and biologics. Despite their effectiveness, the empty BBP vectors post-drug release may pose long-term safety risks due to their difficult systemic clearance. Here, a responsive degradable BBP platform for cancer therapy is developed, featuring a poly(disulfide) backbone grafted with fluorine-terminated zwitterionic side chains.
View Article and Find Full Text PDFBackground: Previous research has shown that apoptosis of nucleus pulposus (NP) cells contributes to intervertebral disc degeneration (IDD) progression. Endoplasmic reticulum (ER) stress is a reaction to diverse stimuli in eukaryotes and is tightly contacted with apoptosis. Quercetin, a naturally occurring flavonoid, exerts protective effects against degenerative diseases via ER stress.
View Article and Find Full Text PDF