For classical waves, phase matching is vital for enabling efficient energy transfer in many scenarios, such as waveguide coupling and nonlinear optical frequency conversion. Here, we propose a temporal quasi-phase matching method and realize robust and complete acoustical energy transfer between arbitrarily detuned cavities. In a set of three cavities, A, B, and C, the time-varying coupling is established between adjacent elements.
View Article and Find Full Text PDFLight and sound are the most ubiquitous forms of waves, associated with a variety of phenomena and physical effects such as rainbows and echoes. Light and sound, both categorized as classical waves, have lately been brought into unexpected connections with exotic topological phases of matter. We are currently witnessing the onset of a second wave of active research into this topic.
View Article and Find Full Text PDFThe durability of bioprosthetic heart valves is always compromised by the inherent antigenicity of biomaterials. Decellularization has been a promising approach to reducing the immunogenicity of biological valves. However, current methods are insufficient in eliminating all immunogenicity from the biomaterials, necessitating the exploration of novel techniques.
View Article and Find Full Text PDFWeyl points-topological monopoles of quantized Berry flux-are predicted to spread to Weyl exceptional rings in the presence of non-Hermiticity. Here, we use a one-dimensional Aubry-Andre-Harper model to construct a Weyl semimetal in a three-dimensional parameter space comprising one reciprocal dimension and two synthetic dimensions. The inclusion of non-Hermiticity in the form of gain and loss produces a synthetic Weyl exceptional ring (SWER).
View Article and Find Full Text PDFBuilding upon the bulk-boundary correspondence in topological phases of matter, disclinations have recently been harnessed to trap fractionally quantized density of states (DOS) in classical wave systems. While these fractional DOS have associated states localized to the disclination's core, such states are not protected from deconfinement due to the breaking of chiral symmetry, generally leading to resonances which, even in principle, have finite lifetimes and suboptimal confinement. Here, we devise and experimentally validate in acoustic lattices a paradigm by which topological states bind to disclinations without a fractional DOS but which preserve chiral symmetry.
View Article and Find Full Text PDFPhys Rev Lett
November 2021
We report a three-dimensional (3D) topological insulator (TI) formed by stacking identical layers of Chern insulators in a hybrid real-synthetic space. By introducing staggered interlayer hopping that respects mirror symmetry, the bulk bands possess an additional Z_{2} topological invariant along the stacking dimension, which, together with the nontrivial Chern numbers, endows the system with a Z×Z_{2} topology. A 4-tuple topological index characterizes the system's bulk bands.
View Article and Find Full Text PDFSci Bull (Beijing)
September 2021
The recent discovery and realizations of higher-order topological insulators enrich the fundamental studies on topological phases. Here, we report three-dimensional (3D) wave-steering capabilities enabled by topological boundary states at three different orders in a 3D phononic crystal with nontrivial bulk topology originated from the synergy of mirror symmetry of the unit cell and a non-symmorphic glide symmetry of the lattice. The multitude of topological states brings diverse possibilities of wave manipulations.
View Article and Find Full Text PDFAim: As one of the most common and lethal carcinomas, hepatocellular carcinoma (HCC) is a global health concern and affects millions of people worldwide. Current treatments for HCC are very limited due to its unclear pathogenesis. Here, we aim to further investigate the role of circCMTM3/microRNA (miR)-3619-5p in HCC.
View Article and Find Full Text PDFObjectives: Pancreatic carcinoma (PC) has become the fourth leading cause of cancer deaths. Long noncoding RNA DUXAP8 has also been reported to play a regulatory role in PC progression. However, its molecular mechanism in PC is not fully elucidated.
View Article and Find Full Text PDFTopological notions in physics often emerge from adiabatic evolution of states. It not only leads to fundamental insight of topological protection but also provides an important approach for the study of higher-dimensional topological phases. In this work, we first demonstrate the transfer of topological boundary states (TBSs) across the bulk to the opposite boundary in an acoustic waveguide system.
View Article and Find Full Text PDFWorld J Gastrointest Oncol
October 2020
Background: Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths worldwide, but there is a shortage of effective biomarkers for its diagnosis.
Aim: To explore blood exosomal micro ribonucleic acids (miRNAs) as potential biomarkers for HCC diagnosis.
Results: The principal component analysis suggested that daily alcohol consumption could alter the blood exosomal miRNA profiles of hepatitis B virus positive non-HCC patients through miR-3168 and miR-223-3p.
We report the first realization of a three-dimensional (3D) acoustic double-zero-index medium (DZIM) made of a cubic lattice of metal rods. While the past decade has seen several realizations of 2D DZIM, achieving such a medium in 3D has remained an elusive challenge. Here, we show how a fourfold degenerate point with conical dispersion can be induced at the Brillouin zone center, such that the material becomes a 3D DZIM with the effective mass density and compressibility simultaneously acquiring near-zero values.
View Article and Find Full Text PDFWe present a design of acoustic frequency filter based on a two-dimensional anisotropic phononic crystal. The anisotropic band structure exhibits either a directional or a combined (global + directional) bandgap at certain frequency regions, depending on the geometry. When the time-reversal symmetry is broken, it may introduce a topologically nontrivial bandgap.
View Article and Find Full Text PDFAn acoustic asymmetric transmission device exhibiting unidirectional transmission property for acoustic waves is extremely desirable in many practical scenarios. Such a unique property may be realized in various configurations utilizing acoustic Zeeman effects in moving media as well as frequency-conversion in passive nonlinear acoustic systems and in active acoustic systems. Here we demonstrate a new acoustic frequency conversion process in a time-varying system, consisting of a rotating blade and the surrounding air.
View Article and Find Full Text PDFWe numerically realize the acoustic rainbow trapping effect by tapping an air waveguide with space-coiling metamaterials. Due to the high refractive-index of the space-coiling metamaterials, our device is more compact compared to the reported trapped-rainbow devices. A numerical model utilizing effective parameters is also calculated, whose results are consistent well with the direct numerical simulation of space-coiling structure.
View Article and Find Full Text PDFArtificial honeycomb lattices with Dirac cone dispersion provide a macroscopic platform to study the massless Dirac quasiparticles and their novel geometric phases. In this paper, a quadruple-degenerate state is achieved at the center of the Brillouin zone in a two-dimensional honeycomb lattice phononic crystal, which is a result of accidental degeneracy of two double-degenerate states. In the vicinity of the quadruple-degenerate state, the dispersion relation is linear.
View Article and Find Full Text PDF