The traditional dynamical phase transition refers to the appearance of singularities in an observable with respect to a control parameter for a late-time state or singularities in the rate function of the Loschmidt echo with respect to time. Here, we study the many-body dynamics in a continuously monitored free fermion system with conditional feedback under open boundary conditions. We surprisingly find a novel dynamical transition from a logarithmic scaling of the entanglement entropy to an area-law scaling as time evolves.
View Article and Find Full Text PDF