Publications by authors named "Ze-Chen Li"

Nanoplastics (NPs, <1 μm) are of great concern worldwide because of their high potential risk toward organisms in aquatic systems, while very little work has been focused on their tissue-specific toxicokinetics due to the limitations of NP quantification for such a purpose. In this study, NPs with two different sizes (86 and 185 nm) were doped with palladium (Pd) to accurately determine the uptake and depuration kinetics in various tissues (intestine, stomach, liver, gill, and muscle) of tilapia () in water, and subsequently, the corresponding toxic effects in the intestine were explored. Our results revealed uptake and depuration constants of 2.

View Article and Find Full Text PDF

There is a growing concern about the effects of nanoplastics on biological safety and human health because of their global ubiquity in the environment. Methodologies for quantitative analysis of nanoplastics are important for the critical evaluation of their possible risks. Herein, a sensitive yet simple and environmentally friendly extraction approach mediated by protein corona is developed and coupled to pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) for nanoplastic determination in environmental waters.

View Article and Find Full Text PDF

Micro- and nanoplastics unavoidably enter into organisms and humans as a result of widespread exposures through drinking waters, foods, and even inhalation. However, owing to the limited availability of quantitative analytical methods, the effect of nanoplastics inside animal bodies is poorly understood. Herein, we report a sensitive and robust method to determine the chemical composition, mass concentration, and size distribution of nanoplastics in biological matrices.

View Article and Find Full Text PDF

In the present work, we have introduced a series of stable radical-doped coordination compounds composed of donor-acceptor structures and shown to produce organic radicals in situ as a result of unconventional lone pair-π interactions in ambient conditions. Inconspicuous lone pair-π and C-Hπ interactions were shown to play a key role in self-assembly as well as the charge transfer process, resulting in a long-lived charge-separated state able to generate organic radicals. The resultant species displayed broad-spectrum antimicrobial activity, including against multi-drug-resistant bacteria.

View Article and Find Full Text PDF