Publications by authors named "Ze Qiu"

In this research, we focus our attention on the leaching peculiarity of uranium-containing Mg-Al layered double hydroxide (LDH) which is one kind of waste sediment in uranium tailings, generated by the alkalinization of uranyl raffinate. The effect of inorganic (CO, SO, PO) and organic (CO, CHO, CHOP) anions were investigated. Atomic force microscopy result showed that the thickness of CO-LDH increased to 8.

View Article and Find Full Text PDF

Radiation stability of food packaging materials is the key to ensuring food quality. In this study, Co γ-ray was selected to investigate the radiation resistance of food packaging polystyrene (PS) resin material, although the FTIR analysis showed that the intensity of several peaks decreased slightly. The gel permeation chromatography (GPC) results displayed that the value of peak molecular weight (Mp) of PS went from 2.

View Article and Find Full Text PDF

Pepper southern blight, caused by Sclerotium rolfsii, is a devastating soil-borne disease resulting in significant loss to pepper, Capsicum annuum L. production. Here, we isolated an antagonistic bacterial strain XQ-29 with antifungal activity against S.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection disrupts the epithelial barrier and triggers airway inflammation. The envelope (E) protein, a core virulence structural component of coronaviruses, may play a role in this process. Pathogens could interfere with transepithelial Cl transport via impairment of the cystic fibrosis transmembrane conductance regulator (CFTR), which modulates nuclear factor κB (NF-κB) signaling.

View Article and Find Full Text PDF

Uranium-containing silica gel (UCSG) is a secondary waste generated during the advanced treatment of nuclear wastewater. In order to reduce the growing storage pressure for UCSG, from the perspective of building a borosilicate glass network, UCSG was used to replace SiO in the glass-cured formula to directly achieve the immobilization of UCSG. SEM-EDS results showed that uranium was uniformly distributed in the matrix, and the maximum solid solubility of UCSG (two components: silica gel and uranyl ions) in the formula was as high as 55 wt %.

View Article and Find Full Text PDF

spp. are economically important phytopathogenic fungi that cause anthracnose in a variety of plant species worldwide. Hypovirulence-associated mycoviruses provide new options for the biological control of plant fungal diseases.

View Article and Find Full Text PDF

Rhizoctonia solani is a widespread and devastating plant pathogenic fungus that infects many important crops. This pathogen causes tobacco target spot, a disease that is widespread in many tobacco-growing countries and is destructive to tobacco. To identify antagonistic microorganisms with biocontrol potential against this disease, we isolated Streptomyces strains from forest inter-root soil and screened a promising biocontrol strain, ZZ-21.

View Article and Find Full Text PDF

Sedum plumbizincicola is a perennial succulent herb that can hyperaccumulate high concentrations of cadmium and zinc (Liu et al. 2017). In October 2021, a leaf spot disease occurred on S.

View Article and Find Full Text PDF

Dioscorea alata is an annual or perennial dicotyledonous plant which is a vegetatively propagated tuberous food crop (Mondo et al. 2021). In 2021, symptoms of leaf anthracnose occurred on D.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the viral pathogen responsible for the worldwide coronavirus disease 2019 (COVID-19) pandemic. The novel SARS-CoV-2 ORF8 protein is not highly homologous with known proteins, including accessory proteins of other coronaviruses. ORF8 contains a 15-amino-acid signal peptide in the N terminus that localizes the mature protein to the endoplasmic reticulum.

View Article and Find Full Text PDF

Toxoplasma gondii is a widespread parasitic protozoan causing toxoplasmosis including pulmonary toxoplasmosis. As the first line of host defense, airway epithelial cells play critical roles in orchestrating pulmonary innate immunity. However, the mechanism underlying the airway inflammation induced by the T.

View Article and Find Full Text PDF

SARS-CoV-2, the culprit pathogen of COVID-19, elicits prominent immune responses and cytokine storms. Intracellular Cl is a crucial regulator of host defense, whereas the role of Cl signaling pathway in modulating pulmonary inflammation associated with SARS-CoV-2 infection remains unclear. By using human respiratory epithelial cell lines, primary cultured human airway epithelial cells, and murine models of viral structural protein stimulation and SARS-CoV-2 direct challenge, we demonstrated that SARS-CoV-2 nucleocapsid (N) protein could interact with Smad3, which downregulated cystic fibrosis transmembrane conductance regulator (CFTR) expression via microRNA-145.

View Article and Find Full Text PDF

Airway epithelium plays critical roles in regulating airway surface liquid (ASL), the alteration of which causes mucus stasis symptoms. Allicin is a compound released from garlic and harbors the capacity of lung-protection. However, the potential regulatory effects of allicin on airway epithelium remain elusive.

View Article and Find Full Text PDF

G protein-coupled estrogen receptor (GPER), a seven-transmembrane G protein-coupled receptor, mediates the rapid pre-genomic signaling actions of estrogen and derivatives thereof. The expression of GPER is extensive in mammal male reproductive system. However, the functional role of GPER in mouse sperm has not yet been well recognized.

View Article and Find Full Text PDF

Asthma is a common heterogeneous respiratory disease characterized by airway inflammation and airway hyperresponsiveness (AHR) which is associated with abnormality in smooth muscle contractility. The epithelial cell-derived cytokine IL-25 is implicated in type 2 immune pathology including asthma, whereas the underlying mechanisms have not been fully elucidated. This study aims to investigate the effects of IL-25 on mouse tracheal smooth muscle contractility and elucidate the cellular mechanisms.

View Article and Find Full Text PDF

The proinflammatory cytokine tumor necrosis factor-α (TNF-α) augments intracellular Ca signaling and contractile responses of airway smooth muscles, leading to airway hyperresponsiveness. However, the underlying mechanism has not been fully elucidated. This study aimed to investigate the cellular mechanism of the potentiated contraction of mouse tracheal smooth muscle induced by TNF-α.

View Article and Find Full Text PDF

Trichomonas vaginalis is a common protozoan parasite, which causes trichomoniasis associated with severe adverse reproductive outcomes. However, the underlying pathogenesis has not been fully understood. As the first line of defense against invading pathogens, the vaginal epithelial cells are highly responsive to environmental stimuli and contribute to the formation of the optimal luminal fluid microenvironment.

View Article and Find Full Text PDF

Prostaglandin E (PGE) is a principal lipid mediator mediating various biological processes including immune responses and fluid secretion. As the first line of host defense against infection, vaginal epithelium plays orchestrated roles in vaginal innate immunity. However, the effect of PGE triggered by pro-inflammatory stimuli on vaginal epithelium remains elusive.

View Article and Find Full Text PDF

The neurohypophyseal hormone oxytocin (OT) plays critical roles in lactation and parturition, while its function in male reproduction system is largely unknown. This study aims to investigate the effect of OT on regulating transepithelial ion transport in rat cauda epididymal epithelium. With the use of RT-PCR, Western blot, and immunohistochemical analysis, we found that OT receptor (OTR) was expressed and localized at the basal membrane of rat cauda epididymal epithelium.

View Article and Find Full Text PDF

Epididymal epithelium possesses active ion transport properties conducive to the maintenance of appropriate epididymal intraluminal microenvironment. The endogenous gasotransmitter carbon monoxide (CO) regulates numerous cellular processes including water and electrolyte transport in various epithelia. However, the functional role of CO in epididymal epithelium is still elusive.

View Article and Find Full Text PDF

Trichomonas vaginalis is a primary urogenital parasite that causes trichomoniasis, a common sexually transmitted disease. As the first line of host defense, vaginal epithelial cells play critical roles in orchestrating vaginal innate immunity and modulate intracellular Cl homeostasis via the cystic fibrosis transmembrane conductance regulator (CFTR), an anion channel that plays positive roles in regulating nuclear factor-κB (NF-κB) signalling. However, the association between T.

View Article and Find Full Text PDF

Endometrial epithelium exhibits a robust ion transport activity required for dynamical regulation of uterine fluid environment and thus embryo implantation. However, there still lacks a thorough understanding of the ion transport processes and regulatory mechanism in peri-implantation endometrial epithelium. As a gaseous signaling molecule or gasotransmitter, hydrogen sulfide (HS) regulates a myriad of cellular and physiological processes in various tissues, including the modulation of ion transport proteins in epithelium.

View Article and Find Full Text PDF

As a novel gasotransmitter, hydrogen sulfide (HS) elicits various physiological actions including smooth muscle relaxation and promotion of transepithelial ion transport. However, the pro-secretory function of HS in the male reproductive system remains largely unclear. The aim of this study is to elucidate the possible roles of HS in modulating rat epididymal intraluminal ionic microenvironment essential for sperm storage.

View Article and Find Full Text PDF
Article Synopsis
  • - This study investigates the role of intracellular chloride (Cl) in airway epithelial cells and how its accumulation affects airway inflammation, especially after exposure to Pseudomonas aeruginosa lipopolysaccharide (LPS).
  • - Researchers found that higher levels of intracellular Cl activated certain signaling pathways (NF-κB and SGK1), leading to increased airway inflammation, while inhibiting SGK1 reduced this inflammation both in lab settings and in animal models.
  • - The study highlights the significance of the Cl-SGK1 signaling pathway in conditions like bronchiectasis, and suggests that targeting excessive intracellular Cl levels could be a potential strategy for treating airway inflammatory diseases.
View Article and Find Full Text PDF

The pollen-tube pathway is feasible to transform vector- and selectable marker-free linear gene cassettes into plants to address the biosafety issues. However, its transformation frequency is low and the screening of selectable marker-free transformants by PCR analysis is time-consuming and expensive. In this study, a linear GFP cassette (Ubi-GFP-nos) flanked by 25bp T-DNA borders was transformed into maize via the pollen-tube pathway.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiondo5pocldno18bad9n2jmdfng9pgg0f9m): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once