Publications by authors named "Ze Qin Lim"

Background: The spread of Carbapenemase-producing Organisms (CPO) remains a major threat globally. Within clinical settings, the existing method of determining gene load involves traditional culture to determine bacterial load and polymerase-chain-reaction-based Xpert Carba-R Assay to determine carbapenemase gene type. However, there is a need for a fast and accurate method of quantifying CPO colonisation to study the risk of persistent CPO carriage.

View Article and Find Full Text PDF

Enterovirus A71 (EV-A71) causes Hand, Foot, and Mouth Disease and has been clinically associated with neurological complications. However, there is a lack of relevant models to elucidate the neuropathology of EV-A71 and its mechanism, as the current models mainly utilize animal models or immortalized cell lines. In this study, we established a human motor neuron model for EV-A71 infection.

View Article and Find Full Text PDF

Background: Enterovirus 71 (EV-A71) causes Hand, Foot and Mouth Disease (HFMD) in children and has been associated with neurological complications. The molecular mechanisms involved in EV-A71 pathogenesis have remained elusive.

Methods: A siRNA screen in EV-A71 infected-motor neurons was performed targeting 112 genes involved in intracellular membrane trafficking, followed by validation of the top four hits using deconvoluted siRNA.

View Article and Find Full Text PDF

Pseudomonas aeruginosa ST308 clone has been reported to carry carbapenemase genes such as and but has been rarely associated with . A total of 199 P. aeruginosa ST308 clinical and environmental isolates obtained between April 2019 and November 2020 from a tertiary-care hospital in Singapore were characterized using whole-genome sequencing.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the effectiveness of booster doses of COVID-19 vaccines (both mRNA and inactivated types) in protecting against severe disease and confirmed infections during the Omicron wave in Singapore.
  • It includes Singapore residents aged 30 and older who received either two doses of mRNA vaccines (like Pfizer or Moderna) or inactivated vaccines (like Sinovac and Sinopharm) by March 2022, while excluding those with prior infections.
  • Results show that among over 2.4 million individuals, around 13.1% had confirmed SARS-CoV-2 infections, with mRNA boosters showing a protection effectiveness against confirmed infection of approximately 31.7% to 41.3% shortly after receiving the booster
View Article and Find Full Text PDF

Enterovirus 71 (EV-A71) causes hand, foot, and mouth disease (HFMD) in children and has been associated with neurological complications. With no specific treatment and a monovalent vaccine limited to the Chinese market, HFMD remains a serious public health concern and an economic burden to affected societies. The molecular mechanisms underpinning EV-A71 neurovirulence have yet to be fully elucidated.

View Article and Find Full Text PDF

Enterovirus-A71 (EV-A71) has been associated with severe neurological forms of hand, foot, and mouth disease (HFMD). EV-A71 infects motor neurons at neuromuscular junctions (NMJs) to invade the central nervous system (CNS). Here, we investigate the role of peripherin (PRPH) during EV-A71 infection, a type III intermediate neurofilament involved in neurodegenerative conditions.

View Article and Find Full Text PDF

: Hand, foot and mouth disease (HFMD) is a serious public health concern in the Asia-Pacific region with recurrent cyclical outbreaks. Enterovirus 71 (EV-A71) and coxsackievirus type A are the main causative agents of HFMD. While majority of HFMD cases are mild and self-limiting, neurological complications have been reported for EV-A71 associated HFMD.

View Article and Find Full Text PDF

Enterovirus 71 (EV71) causing Hand, Foot and Mouth Disease, is regarded as the most important neurotropic virus worldwide. EV71 is believed to replicate in muscles and infect motor neurons to reach the central nervous system (CNS). To further investigate the mechanisms involved, we have employed the motor neuron cell line NSC-34.

View Article and Find Full Text PDF