Publications by authors named "Zdorovets M"

Article Synopsis
  • Oxide nanoparticles, like zirconium dioxide (ZrO₂), are important due to their unique properties, such as high surface area and enhanced catalytic activity, leading to various industrial uses and research developments.
  • This study focuses on how different chemical precursors and lower synthesis temperatures (110-160 °C) affect the properties of ZrO₂ nanoparticles produced through hydrothermal synthesis, eliminating the need for higher temperatures and pressure.
  • The results show that at synthesis temperatures of 110-130 °C, the nanoparticles predominantly form a cubic structure, transitioning to a monoclinic phase after heating beyond 500 °C, and exhibit notable absorption in the UV range, making them suitable for applications like UV absorbers and additives in
View Article and Find Full Text PDF
Article Synopsis
  • This study investigated how irradiation from krypton and helium ions affects the structure and composition of high-entropy alloys (HEAs) at room temperature, specifically CoCrFeNi and CoCrFeMnNi.
  • Findings showed that while elemental distribution remained stable, blisters formed on nickel surfaces due to the irradiation process, with large ones averaging 3.8 μm in diameter.
  • The research noted significant changes in lattice parameters, stress levels (compressive and tensile), and dislocation densities in the HEAs post-irradiation, indicating differences in material responses between the two alloys.
View Article and Find Full Text PDF
Article Synopsis
  • * The study examined changes in their structure and surface morphology after irradiation, revealing the development of a porous surface with microchannels, and noted that CoCrFeMnNi had smaller blister sizes compared to CoCrFeNi.
  • * Results showed that while elemental compositions remained stable under high temperatures, CoCrFeMnNi demonstrated better radiation resistance by forming compressive macrostresses and a higher dislocation density compared to CoCrFeNi.
View Article and Find Full Text PDF

In this work, the surfaces of poly (ethylene terephthalate) track-etched membranes (PET TeMs) with pore sizes of 670-1310 nm were hydrophobized with 2,2,3,3,4,4,5,5,6,6,7,7-dodecafluoroheptyl acrylate (DFHA) by photoinitiated graft polymerization. Attenuated total reflection FTIR spectroscopy (ATR-FTIR), scanning electron microscopy (SEM) coupled to an energy-dispersive X-ray spectrometer (EDX), and contact angle measurements were used to identify and characterize the TeMs. The optimal parameters for graft polymerization were determined as follows: polymerization time of 60 min, monomer concentration of 30%, and distance from the UV source of 7 cm.

View Article and Find Full Text PDF

Cancer is one of the leading causes of global mortality, and its incidence is increasing annually. Neutron capture therapy (NCT) is a unique anticancer modality capable of selectively eliminating tumor cells within normal tissues. The development of accelerator-based, clinically mountable neutron sources has stimulated a worldwide search for new, more effective compounds for NCT.

View Article and Find Full Text PDF

Stimuli-responsive membranes play an important role in the fields of biomedicine, food and chemical industries, and environmental applications, including separation of water-oil emulsions. In this study, we present a method to fabricate pH-sensitive membranes using UV-initiated RAFT graft copolymerization of styrene (ST) and acrylic acid (AA) on poly(ethylene terephthalate) (PET) track-etched membranes (TeMs). The optimization of polymerization conditions led to successful grafting of polystyrene (PS) and poly(acrylic acid) (PAA) onto PET TeMs, resulting in membranes with stable hydrophobicity and pH change responsiveness.

View Article and Find Full Text PDF

This paper describes the desalination process by membrane distillation (MD) using track-etched membranes (TeMs). Hydrophobic track-etched membranes based on poly(ethylene terephthalate) (PET TeMs) with pore diameters from 700 to 1300 nm were prepared by UV-initiated graft polymerization of lauryl methacrylate (LMA) inside the nanochannels. Modified PET TeMs were investigated by Fourier transform infrared (FTIR) spectroscopy, atomic force microscopy (AFM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and contact wetting angle (CA) measurements.

View Article and Find Full Text PDF

We present here a novel experimental study of changes after contact electrification in the optical transmission spectra of samples of both pristine and irradiated PET film treated with Kr ions of energy of 1.75 MeV and a fluence of 3 × 10 cm. We used a non-standard electrification scheme for injecting electrons into the film by applying negative electrodes to both its surfaces and using the positively charged inner regions of the film itself as the positive electrode.

View Article and Find Full Text PDF

This is the first study ever to show the impact of high-energy 160 MeV xenon ion irradiation on the properties of 100Cr6 bearing steel. The projected range (R) of xenon ions is 8.2 µm.

View Article and Find Full Text PDF

The purpose of this study is to comprehensively analyze the influence of different fluences of irradiation with Xe heavy ions on alterations in the structural, optical, and strength properties of AlN ceramics and to establish a connection between structural distortions and alterations in the optical and mechanical properties of the ceramics. X-ray diffraction, UV-Vis and Raman spectroscopy, and indentation and single-compression methods were used as research methods. During the study, it was demonstrated that at low irradiation fluences, the main role in the changes in the properties of the AlN ceramics is played by effects related to changes in their optical properties and a fundamental absorption edge shift, which characterizes changes in the electronic properties of the ceramics (changes in the distribution of electron density).

View Article and Find Full Text PDF

The purpose of this work is to simulate the processes of gaseous swelling in SiC ceramics as well as the associated changes in strength and thermophysical properties under high-temperature irradiation with helium ions. The choices of irradiation conditions (irradiation temperatures of 700 and 1000 K) and irradiation fluences (10-10 ion/cm) are based on the possibilities of modeling the processes of destructive changes in the near-surface layer as a result of the accumulation of gas-filled inclusions during high-dose irradiation. During this study, it was found that an increase in the irradiation temperature of the samples from 700 to 1000 K leads to a decrease in the resistance to gas swelling, since with the temperature increase, the mobility of implanted helium in the near-surface layer grows, which results in an increase in the size of gas-filled bubbles and, as a result, accelerated destruction of the damaged layer.

View Article and Find Full Text PDF

A promising approach that uses the sol-gel method to manufacture new breathable active films with self-cleaning and antibacterial surfaces is based on the PET membranes obtained via ion track technology with a pore density of 10 cm and a pore diameter of about 500 ± 15 nm, coated with a layer of TiO anatase, with a thickness of up to 80 nm. The formation of the photocatalytically active TiO anatase phase was confirmed using Raman analysis. Coating the PET membrane with a layer of TiO increased the hydrophobicity of the system (CA increased from 64.

View Article and Find Full Text PDF

The aim of this paper is to test the previously stated hypothesis and several experimental facts about the effect of the ion flux or ion beam current under irradiation with heavy ions on the radiation damage formation in the ceramic near-surface layer and their concentration. The hypothesis is that, when considering the possibilities of using ion irradiation (usually with heavy ions) for radiation damage simulation at a given depth, comparable to neutron irradiation, it is necessary to consider the rate factor for the set of atomic displacements and their accumulation. Using the methods of X-ray diffraction analysis, Raman and UV-Vis spectroscopy, alongside photoluminescence, the mechanisms of defect formation in the damaged layer were studied by varying the current of the Xe ion beam with an energy of 230 MeV.

View Article and Find Full Text PDF

The article considers the effect of doping with magnesium oxide (MgO) on changes in the properties of lithium-containing ceramics based on lithium metazirconate (LiZrO). There is interest in this type of ceramics on account of their prospects for application in tritium production in thermonuclear power engineering, as well as several other applications related to alternative energy sources. During the investigations undertaken, it was found that variation in the MgO dopant concentration above 0.

View Article and Find Full Text PDF

The aim of this work is to study the structural, dielectric, and mechanical properties of aluminum oxide ceramics with the triple sintering additive 4CuO-TiO-2NbO. With an increase in sintering temperature from 1050 to 1500 °C, the average grain size and the microhardness value at a load of 100 N (HV0.1) increased with increasing density.

View Article and Find Full Text PDF

Effective removal of toxic inorganic and organic pollutants is one of the current leading challenges of wastewater treatment. In this study, the decomposition of methylene blue (MB) under UV light irradiation was investigated in the presence of copper nanoclusters (NCs)-deposited polyethylene terephthalate (PET) track-etched hybrid membranes. PET track-etched membranes (TeMs) with an average pore size of ~400 nm were grafted by functional acrylic acid (AA) monomer under electron beam irradiation after oxidation with HO/UV system.

View Article and Find Full Text PDF

In this work, the effect of irradiation with heavy Kr and Xe ions on the change in the structural and strength properties of CeO microstructural ceramics, which is one of the candidates for inert matrix materials for dispersed nuclear fuel, is considered. Irradiation with heavy Kr and Xe ions was chosen to determine the possibility of simulation of radiation damage comparable to the action of fission fragments, as well as neutron radiation, considering damage accumulation at a given depth of the near-surface layer. During the research, it was found that the main changes in the structural properties with an increase in the irradiation fluence are associated with the crystal lattice deformation distortions and the consequent radiation damage accumulation in the surface layer, and its swelling.

View Article and Find Full Text PDF

Nanoporous track-etched membranes (TeMs) are highly versatile materials that have shown promise in various applications such as filtration, separation, adsorption, and catalysis due to their mechanical integrity and high surface area. The performance of TeMs as catalysts for removing toxic pollutants is greatly influenced by the pore diameter, density, and functionalization of the nanochannels. In this study, the synthesis of functionalized poly(ethylene terephthalate) (PET) TeMs with Pd nanoparticles (NPs) as catalysts for the photodegradation of the antibiotic metronidazole (MTZ) was methodically investigated and their catalytic activity under UV irradiation was compared.

View Article and Find Full Text PDF

This paper presents simulation results of the ionization losses of incident He ions with an energy of 40 keV during the passage of incident ions in the near-surface layer of alloys based on TiTaNbV with a variation of alloy components. For comparison, data on the ionization losses of incident He ions in pure niobium, followed by the addition of vanadium, tantalum, and titanium to the alloy in equal stoichiometric proportions, are presented. With the use of indentation methods, the dependences of the change in the strength properties of the near-surface layer of alloys were determined.

View Article and Find Full Text PDF

High-entropy alloys (HEAs) have prospects for use as nuclear structural materials. Helium irradiation can form bubbles deteriorating the structure of structural materials. The structure and composition of NiCoFeCr and NiCoFeCrMn HEAs formed by arc melting and irradiated with low-energy 40 keV He ions and a fluence of 2 × 10 cm have been studied.

View Article and Find Full Text PDF

In this work, we have developed a method for the preparation of pH-responsive track-etched membranes (TeMs) based on poly(ethylene terephthalate) (PET) with pore diameters of 2.0 ± 0.1 μm of cylindrical shape by RAFT block copolymerization of styrene (ST) and 4-vinylpyridine (4-VP) to be used in the separation of water-oil emulsions.

View Article and Find Full Text PDF

This paper reports the synthesis of composite track-etched membranes (TeMs) modified with electrolessly deposited copper microtubules using copper deposition baths based on environmentally friendly and non-toxic reducing agents (ascorbic acid (Asc), glyoxylic acid (Gly), and dimethylamine borane (DMAB)), and comparative testing of their lead(II) ion removal capacity via batch adsorption experiments. The structure and composition of the composites were investigated by X-ray diffraction technique and scanning electron and atomic force microscopies. The optimal conditions for copper electroless plating were determined.

View Article and Find Full Text PDF

The purpose of this paper is to study the effect of PbO doping of multicomponent composite glass-like ceramics based on TeO, WO, BiO, MoO, and SiO, which are one of the promising materials for gamma radiation shielding. According to X-ray diffraction data, it was found that the PbO dopant concentration increase from 0.10 to 0.

View Article and Find Full Text PDF

The aim of this paper is to study the effect of variation in the component ratio of (1-x)SiN-xAlO ceramics on the phase composition, strength and thermal properties of ceramics. To obtain ceramics and their further study, the solid-phase synthesis method combined with thermal annealing of samples at a temperature of 1500 °C typical for the initialization of phase transformation processes was used. The relevance and novelty of this study lies in obtaining new data on the processes of phase transformations with a variation in the composition of ceramics, as well as determining the effect of the phase composition on the resistance of ceramics to external influences.

View Article and Find Full Text PDF