Publications by authors named "Zdenka Policova"

The measured surface tension of a binary liquid is found to depend strongly on the constituents of the adjacent vapor and on whether equilibrium has been achieved, giving insight into the complex interfacial configuration. This dependence is quantified by three techniques that offer complementary insights: surface tension measurements with a constrained sessile drop surrounded by different vapors, surface tension measurements by surface light scattering spectroscopy in a sealed cell at equilibrium, and molecular dynamics simulations of the equilibrium surface tension and excess surface concentration. Ensuring homogeneity of the binary liquid, which is essential for surface light scattering, was found to be nontrivial and was assured by high-sensitivity Schlieren imaging.

View Article and Find Full Text PDF

A self-assembled phospholipid monolayer at an air-water interface is a well-defined model system for studying surface thermodynamics, membrane biophysics, thin-film materials, and colloidal soft matter. Here we report a study of two-dimensional phase transitions in the dipalmitoylphosphatidylcholine (DPPC) monolayer at the air-water interface using a newly developed methodology called constrained drop surfactometry (CDS). CDS is superior to the classical Langmuir balance in its capacity for rigorous temperature control and leak-proof environments, thus making it an ideal alternative to the Langmuir balance for studying lipid polymorphism.

View Article and Find Full Text PDF

This paper reports dynamic surface tension experiments of a lung surfactant preparation, BLES, for a wide range of concentrations, compression ratios and compression rates. These experiments were performed using Axisymmetric Drop Shape Analysis-Constrained Sessile Drop (ADSA-CSD). The main purpose of the paper is to interpret the results in terms of physical parameters using the recently developed Compression-Relaxation Model (CRM).

View Article and Find Full Text PDF

Drop shape techniques are widely used for surface tension measurement. As the shape becomes close to spherical, the performance of drop shape techniques deteriorates. A quantitative criterion called shape parameter was previously introduced to quantify the meaning of "well-deformed" drops and "close to spherical" drops.

View Article and Find Full Text PDF

Chitosan, a cationic polysaccharide, has been found to improve the surface activity of lung surfactant extracts in the presence of various inhibitors. It has been proposed that chitosan binds to anionic lipids (e.g.

View Article and Find Full Text PDF

In this work four cationic additives were used to improve the surface activity of lung surfactants, particularly in the presence of bovine serum that was used as a model surfactant inhibitor. Two of those additives were chitosan in its soluble hydrochloride form with average molecular weights of 113kDa and 213kDa. The other two additives were cationic peptides, polylysine 50kDa and polymyxin B.

View Article and Find Full Text PDF

This paper presents a continuation of the development of a drop shape method for film studies, ADSA-CSD (Axisymmetric Drop Shape Analysis-Constrained Sessile Drop). ADSA-CSD has certain advantages over conventional methods. The development presented here allows complete exchange of the subphase of a spread or adsorbed film.

View Article and Find Full Text PDF

A drop shape technique using a constrained sessile drop constellation (ADSA-CSD) has been introduced as a superior technique for studying spread films specially at high collapse pressures [Saad et al. Langmuir 2008, 24, 10843-10850]. It has been shown that ADSA-CSD has certain advantages including the need only for small quantities of liquid and insoluble surfactants, the ability to measure very low surface tension values, easier deposition procedure, and leak-proof design.

View Article and Find Full Text PDF

Collapse pressure of insoluble monolayers is a property determined from surface pressure/area isotherms. Such isotherms are commonly measured by a Langmuir film balance or a drop shape technique using a pendant drop constellation (ADSA-PD). Here, a different embodiment of a drop shape analysis, called axisymmetric drop shape analysis-constrained sessile drop (ADSA-CSD) is used as a film balance.

View Article and Find Full Text PDF

The interaction between a cationic polyelectrolyte, chitosan, and an exogenous bovine lung extract surfactant (BLES) was studied using dynamic compression/expansion cycles of dilute BLES preparations in a Constrained Sessile Drop (CSD) device equipped with an environmental chamber conditioned at 37 degrees C and 100% R.H. air.

View Article and Find Full Text PDF

The effect of humidity on the film stability of Bovine Lipid Extract Surfactant (BLES) is studied using the captive bubble method. It is found that adsorbed BLES films show distinctly different stability patterns at two extreme relative humidities (RHs), i.e.

View Article and Find Full Text PDF

The surface activity of bovine lipid extracted surfactant (BLES) preparations used in surfactant replacement therapy is studied in dynamic film compression/expansion cycles as a function of relative humidity, surfactant concentration, compression rate, and compression periodicity. BLES droplets were formed in a constrained sessile droplet configuration (CSD). Images obtained during cycling were analyzed using axisymmetric drop shape analysis (ADSA) to yield surface tension, surface area, and drop volume data.

View Article and Find Full Text PDF

Chitosan is a natural, cationic polysaccharide derived from fully or partially deacetylated chitin. Chitosan is capable of inducing large phospholipid aggregates, closely resembling the function of nonionic polymers tested previously as additives to therapeutic lung surfactants. The effects of chitosan on improving the surface activity of a dilute lung surfactant preparation, bovine lipid extract surfactant (BLES), and on resisting albumin-induced inactivation were studied using a constrained sessile drop (CSD) method.

View Article and Find Full Text PDF

It has been reported in the literature that sugars such as dextrose and sucrose increase the surface tension of water. The effect was interpreted as a depletion of the solute molecules from the water-air interface. This paper presents accurate measurements of the surface tension of different concentrations of dextrose solution as well as its polymer (i.

View Article and Find Full Text PDF

The in vitro adsorption kinetics of lung surfactant at air-water interfaces is affected by both the composition of the surfactant preparations and the conditions under which the assessment is conducted. Relevant experimental conditions are surfactant concentration, temperature, subphase pH, electrolyte concentration, humidity, and gas composition of the atmosphere exposed to the interface. The effect of humidity on the adsorption kinetics of a therapeutic lung surfactant preparation, bovine lipid extract surfactant (BLES), was studied by measuring the dynamic surface tension (DST).

View Article and Find Full Text PDF

Shortage or malfunction of pulmonary surfactant in alveolar space leads to a critical condition termed respiratory distress syndrome (RDS). Surfactant replacement therapy, the major method to treat RDS, is an expensive treatment. In this paper, the effect of poly(ethylene glycol) (PEG) to improve dynamic surface activity of a bovine lipid extract surfactant (BLES) was studied by axisymmetric drop shape analysis (ADSA) and a captive bubble method.

View Article and Find Full Text PDF

The primary role of lung surfactant is to reduce surface tension at the air-liquid interface of alveoli during respiration. Axisymmetric drop shape analysis (ADSA) was used to study the effect of poly(ethylene glycol) (PEG) on the rate of surface film formation of a bovine lipid extract surfactant (BLES), a therapeutic lung surfactant preparation. PEG of molecular weights 3,350; 8,000; 10,000; 35,000; and 300,000 in combination with a BLES mixture of 0.

View Article and Find Full Text PDF

Existing methodology for surface tension measurements based on drop shapes suffers from the shortcoming that it is not capable to function at very low surface tension if the liquid dispersion is opaque, such as therapeutic lung surfactants at clinically relevant concentrations. The novel configuration proposed here removes the two big restrictions, i.e.

View Article and Find Full Text PDF