Elton's biotic resistance hypothesis posits that species-rich communities are more resistant to invasion. However, it remains unknown how species, phylogenetic and functional richness, along with environmental and human-impact factors, collectively affect plant invasion as alien species progress along the introduction-naturalization-invasion continuum. Using data from 12,056 local plant communities of the Czech Republic, this study reveals varying effects of these factors on the presence and richness of alien species at different invasion stages, highlighting the complexity of the invasion process.
View Article and Find Full Text PDFTerrestrial ecosystems affect climate by reflecting solar irradiation, evaporative cooling, and carbon sequestration. Yet very little is known about how plant traits affect climate regulation processes (CRPs) in different habitat types. Here, we used linear and random forest models to relate the community-weighted mean and variance values of 19 plant traits (summarized into eight trait axes) to the climate-adjusted proportion of reflected solar irradiation, evapotranspiration, and net primary productivity across 36,630 grid cells at the European extent, classified into 10 types of forest, shrubland, and grassland habitats.
View Article and Find Full Text PDFPlant mycorrhizal status (a trait indicating the ability to form mycorrhizas) can be a useful plant trait for predicting changes in vegetation influenced by increased fertility. Mycorrhizal fungi enhance nutrient uptake and are expected to provide a competitive advantage for plants growing in nutrient-poor soils; while in nutrient-rich soils, mycorrhizal symbiosis may be disadvantageous. Some studies in natural systems have shown that mycorrhizal plants can be more frequent in P and N-poor soils (low nutrient availability) or Ca and Mg-high (high pH) soils, but empirical support is still not clear.
View Article and Find Full Text PDFThe search for traits associated with plant invasiveness has yielded contradictory results, in part because most previous studies have failed to recognize that different traits are important at different stages along the introduction-naturalization-invasion continuum. Here we show that across six different habitat types in temperate Central Europe, naturalized non-invasive species are functionally similar to native species occurring in the same habitat type, but invasive species are different as they occupy the edge of the plant functional trait space represented in each habitat. This pattern was driven mainly by the greater average height of invasive species.
View Article and Find Full Text PDFThe effects of non-native species invasions on community diversity and biotic homogenization have been described for various taxa in urban environments, but not for land snails. Here we relate the diversity of native and non-native land-snail urban faunas to urban habitat types and macroclimate, and analyse homogenization effects of non-native species across cities and within the main urban habitat types. Land-snail species were recorded in seven 1-ha plots in 32 cities of ten countries of Central Europe and Benelux (224 plots in total).
View Article and Find Full Text PDF