Publications by authors named "Zdenka Jarolimova"

We present here a capacitive model for the coulometric signal transduction readout of solid-contact ion-selective membrane electrodes (SC-ISE) with a conducting polymer (CP) as an intermediate layer for the detection of anions. The capacitive model correlates well with experimental data obtained for chloride-selective SC-ISEs utilizing poly(3,4-ethylenedioxythiophene) (PEDOT) doped with chloride as the ion-to-electron transducer. Additionally, Prussian blue is used as a simple sodium capacitor to further demonstrate the role of the transduction layer.

View Article and Find Full Text PDF

A simple and novel method is proposed here for the first time to determine pK(a) values of chromogenic hydrophobic pH sensitive probes directly in nanospheres. pK(a) values can be obtained by measuring the pH response of the nanospheres (containing the probes and ion exchanger) followed by measuring the pH and Na(+) responses of the nanospheres (containing solvatochromic dyes and ion exchanger). The pK(a) values of four chromoionophores were successfully determined.

View Article and Find Full Text PDF

Late endosomes are a major trafficking hub in the cell at the crossroads between endocytosis, autophagy, and degradation in lysosomes. Herein is disclosed the first small molecule allowing their selective imaging and monitoring in the form of a diazaoxatriangulene fluorophore, 1a (hexadecyl side chain). The compound is prepared in three steps from a simple carbenium precursor.

View Article and Find Full Text PDF

We present here a new family of pH insensitive ion-selective optical sensors based on emulsified nanospheres containing densely functionalized 15-, 16-, 18- and 20-membered pyreneamide derivatives. These compounds were successfully synthesized by the reaction of α-diazo-β-ketoesters with cyclic ethers of the desired size in the presence of dirhodium complexes followed by a stereo-selective tandem amidation-transposition process and characterized by H-NMR, C-NMR, IR, HR-ESI-MS, UV-VIS and fluorescence spectroscopy and potentiometry. Their unique structure consisting of a crown ether ring linked to pyrene moieties through amide groups exhibits on-off switchable behavior upon binding of specific cations and allows one to incorporate these chemosensors as fluorescent ionophores into ion-exchange nanospheres.

View Article and Find Full Text PDF

Aquatic environments are complex living systems where biological and chemical constituents change rapidly with time and space and may exhibit synergistic interactions. To understand these processes, the traditional approach based on a typically monthly collection of samples followed by laboratory analysis is not adequate. It must be replaced by high-resolution autonomous in situ detection approaches.

View Article and Find Full Text PDF

The transportation and accumulation of redox active species at the buried interface between glassy carbon electrodes and plasticized polymeric membranes have been studied using synchrotron radiation X-ray photoelectron spectroscopy (SR-XPS), near edge X-ray absorption fine structure (NEXAFS), in situ electrochemical Fourier transform infrared-attenuated total reflectance (FTIR-ATR) spectroscopy, cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS). Ferrocene tagged poly(vinyl chloride) [FcPVC], ferrocene (Fc), and its derivatives together with tetracyanoquinodimethane (TCNQ) doped plasticized polymeric membrane electrodes have been investigated, so as to extend the study of the mechanism of this reaction chemistry to different time scales (both small and large molecules with variable diffusion coefficients) using a range of complementary electrochemical and surface analysis techniques. This study also provides direct spectroscopic evidence for the transportation and electrochemical reactivity of redox active species, regardless of the size of the electrochemically reactive molecule, at the buried interface of the substrate electrode.

View Article and Find Full Text PDF

We present here for the first time an all-solid-state chronopotentiometric ion sensing system based on selective ionophores, specifically for the carbonate anion. A chronopotentiometric readout is attractive because it may allow one to obtain complementary information on the sample speciation compared to zero-current potentiometry and detect the sum of labile carbonate species instead of only ion activity. Ferrocene covalently attached to the PVC polymeric chain acts as an ion-to-electron transducer and provides the driving force to initiate the sensing process at the membrane-sample interface.

View Article and Find Full Text PDF

An analytical method for the determination of the composition of renal stones by capillary isotachophoresis with conductometric detection was developed. Using different leading/terminating electrolyte systems, the qualitative and quantitative analysis of organic compounds (urate, xanthate, oxalate) and inorganic ions (phosphate, Ca(2+), Mg(2+), Na(+), NH(4)(+)) species commonly present in mixed renal stones in three separate steps can be carried out with limits of detection about 10 μmol/L. The developed method was validated by the analysis of real samples and can be used for urinary calculi classification.

View Article and Find Full Text PDF