Polycrystalline boron-doped diamond is a promising material for high-power aqueous electrochemical applications in bioanalytics, catalysis, and energy storage. The chemical vapor deposition (CVD) process of diamond formation and doping is totally diversified by using high kinetic energies of deuterium substituting habitually applied hydrogen. The high concentration of deuterium in plasma induces atomic arrangements and steric hindrance during synthesis reactions, which in consequence leads to a preferential (111) texture and more effective boron incorporation into the lattice, reaching a one order of magnitude higher density of charge carriers.
View Article and Find Full Text PDFIn this work, CoCrNi, FeCoCrNi and CoCrFeMnNi concentrated alloys with a Y-Ti oxide particle dispersion were prepared by mechanical alloying and Spark Plasma Sintering. The alloy consists of an FCC Ni-based matrix with a Y-Ti oxide dispersion and additional phases of CrC and CrO. The effect of Fe, Mn, and Y-Ti oxide particles on the formation of oxide scales and the composition of the adjacent CoCrNi and FeCoCrNi alloys was studied.
View Article and Find Full Text PDFPowdered natural Mg-vermiculite (Letovice, Czech Republic), with the formula (Mg0.35K0.02Ca0.
View Article and Find Full Text PDFThe surface and interlayer structure of rhodamine B (RhB)-montmorillonite for various guest concentrations has been studied using a combination of X-ray powder diffraction and molecular modeling (molecular mechanics and molecular dynamics) in the Cerius(2) modeling environment. The joint effect of surface and interlayer structure on the fluorescence spectrum has been observed and discussed in relation to the position and orientation of RhB(+) cations with respect to the silicate layer. Structural analysis showed that the surface and interlayer structures are different as to the arrangement of RhB(+) cations, and both of them strongly depend on the guest concentration in the intercalation solution and on the method of preparation.
View Article and Find Full Text PDFA strategy for the structure analysis of intercalated layer silicates based on a combination of modeling (i.e. force field calculations) and experiment is presented.
View Article and Find Full Text PDFThe intercalation process and the structure of montmorillonite intercalated with [rhodamine B]+ cations have been investigated using molecular modeling (molecular mechanics and molecular dynamics simulations), X-ray powder diffraction and IR spectroscopy. The structure of the intercalate depends strongly on the concentration of rhodamine B in the intercalation solution. The presence of two phases in the intercalated structure was revealed by modeling and X-ray powder diffraction: (i) phase with basal spacing 18 A and with bilayer arrangement of guests and (ii) phase with average basal spacing 23 A and with monolayer arrangement of guests.
View Article and Find Full Text PDF