Publications by authors named "Zdenek Tuma"

Neuropeptide B (NPB) and neuropeptide W (NPW) are neuropeptides, which constitute NPB/W signaling systems together with G-protein coupled receptors NPBWR1. The location and function of NPB/W signaling systems have been predominantly detected and mapped within the CNS, including their role in the modulation of inflammatory pain, neuroendocrine functions, and autonomic nervous systems. The aim of the study is to investigate the impact of diabetes on the neuropeptide B/W signaling system in different heart compartments and neurons which innervates it.

View Article and Find Full Text PDF

The platform for precise proteomic profiling of targeted cell populations from heterogeneous tissue sections is developed. We demonstrate a seamless and systematic integration of LCM with an automated cap-IA for the handling of a very small-sized dissected tissues section from the kidney, liver and pancreatic Langerhans islet of rats. Our analysis reveals that the lowest LCM section area ≥ 0.

View Article and Find Full Text PDF

Sarcomas are a heterogeneous group of mesenchymal tumours, with a great variability in their clinical behaviour. While our knowledge of sarcoma initiation has advanced rapidly in recent years, relatively little is known about mechanisms of sarcoma progression. JUN-murine fibrosarcoma progression series consists of four sarcoma cell lines, JUN-1, JUN-2, JUN-2fos-3, and JUN-3.

View Article and Find Full Text PDF

Members of neuropeptide B/W signaling system have been predominantly detected and mapped within the CNS. In the rat, this system includes neuropeptide B (NPB), neuropeptide W (NPW) and their specific receptor NPBWR1. This signaling system has a wide spectrum of functions including a role in modulation of inflammatory pain and neuroendocrine functions.

View Article and Find Full Text PDF

Spinocerebellar ataxia 1 (SCA1) is a devastating neurodegenerative disease associated with cerebellar degeneration and motor deficits. However, many patients also exhibit neuropsychiatric impairments such as depression and apathy; nevertheless, the existence of a causal link between the psychiatric symptoms and SCA1 neuropathology remains controversial. This study aimed to explore behavioral deficits in a knock-in mouse SCA1 (SCA1) model and to identify the underlying neuropathology.

View Article and Find Full Text PDF

The study aim was to compare molecular-level effects (blood-dialyzer interactions) of heparin and citrate anticoagulation using proteome-wide analysis of biofilm adsorbed to dialysis membrane. Ten patients receiving maintenance hemodialysis were examined in a crossover design under three different anticoagulation regimens, namely citrate, heparin, and anticoagulation-free (control). Following a regular hemodialysis session (4 hours, polysulfone membrane), dialyzers were flushed and the surface biofilm eluted by acetic acid.

View Article and Find Full Text PDF

The complex pathogenesis of sepsis and septic shock involves myocardial depression, the pathophysiology of which, however, remains unclear. In this study, cellular mechanisms of myocardial depression were addressed in a clinically relevant, large animal (porcine) model of sepsis and septic shock. Sepsis was induced by fecal peritonitis in eight anesthetized, mechanically ventilated, and instrumented pigs of both sexes and continued for 24 h.

View Article and Find Full Text PDF

Background: Additional urinary biomarkers for diabetic nephropathy (DN) are needed, providing early and reliable diagnosis and new insights into its mechanisms. Rigorous selection criteria and homogeneous study population may improve reproducibility of the proteomic approach.

Methods: Long-term type 1 diabetes patients without metabolic comorbidities were included, 11 with sustained microalbuminuria (MA) and 14 without MA (nMA).

View Article and Find Full Text PDF

Although the burden of septic acute kidney injury continues to increase, the molecular pathogenesis remains largely obscure. The aim of this exploratory study was a discovery-driven analysis of dynamic kidney tissue protein expression changes applied for the first time in a classic large mammal model of sepsis. To achieve this goal, analyses of protein expression alterations were performed in serial samples of kidney cortical biopsies (before, 12 and 22 h of sepsis) in mechanically ventilated pigs challenged with continuous infusion of pseudomonas aeruginosa and compared with sham-operated control data.

View Article and Find Full Text PDF

Background And Aims: Dysfunction of kidney mitochondria plays a critical role in the pathogenesis of a number of renal diseases. Proteomics represents an untargeted attempt to reveal the remodeling of mitochondrial proteins during disease. Combination of separation methods and mass spectrometry allows identification and quantitative analysis of mitochondrial proteins including protein complexes.

View Article and Find Full Text PDF

Background: Emerging evidence has linked mitochondrial dysfunction to the pathogenesis of many renal disorders, including acute kidney injury, sepsis and even chronic kidney disease. Proteomics is a powerful tool in elucidating the role of mitochondria in renal pathologies. Since the pig is increasingly recognized as a major mammalian model for translational research, the lack of physiological proteome data of large mammals prompted us to examine renal mitochondrial proteome in porcine kidney cortex and medulla

Methods: Kidneys were obtained from six healthy pigs.

View Article and Find Full Text PDF

Propolis is a natural product that honeybees collect from various plants. It is known for its beneficial pharmacological effects. The aim of our study was to evaluate the impact of propolis on human sperm motility, mitochondrial respiratory activity, and membrane potential.

View Article and Find Full Text PDF

Purpose: dialysis-induced inflammatory response including leukocyte and complement activation is considered a significant cofactor of chronic morbidity in long-term hemodialysis (HD) patients. The aim of this study was to provide better insight into its molecular background.

Experimental Design: in 16 patients, basic biocompatibility markers, i.

View Article and Find Full Text PDF

Dialyser bioincompatibility is an important factor contributing to complications of hemodialysis with well known systemic consequences. Here we studied the local processes that occur on dialysis membranes by eluting proteins adsorbed to the polysulfone dialyser membranes of 5 patients after 3 consecutive routine maintenance hemodialysis sessions. At the end of each procedure, a plasma sample was also collected.

View Article and Find Full Text PDF

Fractionated Plasma Separation, Adsorption and Dialysis (Prometheus) has a well-documented capacity to remove protein-bound organic toxins in patients with liver failure. However, the compositions of adsorbed proteins remain unknown. Elution of both adsorbers constituting Prometheus system was performed following a 6-h session in a patient with acute on chronic liver failure.

View Article and Find Full Text PDF

Sepsis is a systemic response to infection commonly found in critically ill patients and is associated with multi-organ failure and high mortality rate. Its pathophysiology and molecular mechanisms are complicated and remain poorly understood. In the present study, we performed a proteomics investigation to characterize early host responses to sepsis as determined by an altered plasma proteome in a porcine model of peritonitis-induced sepsis, which simulated several clinical characteristics of human sepsis syndrome.

View Article and Find Full Text PDF