In polarizable materials, electronic charge carriers interact with the surrounding ions, leading to quasiparticle behavior. The resulting polarons play a central role in many materials properties including electrical transport, interaction with light, surface reactivity, and magnetoresistance, and polarons are typically investigated indirectly through these macroscopic characteristics. Here, noncontact atomic force microscopy (nc-AFM) is used to directly image polarons in FeO at the single quasiparticle limit.
View Article and Find Full Text PDFThe functionality of 2D metal-organic frameworks (MOFs) is crucially dependent on the local environment of the embedded metal atoms. These atomic-scale details are best ascertained on MOFs supported on well-defined surfaces, but the interaction with the support often changes the MOF properties. We elucidate the extent of this effect by comparing the Fe-TCNQ 2D MOF on two weakly interacting supports: graphene and Au(111).
View Article and Find Full Text PDFPotential applications of 2D metal-organic frameworks (MOF) require the frameworks to be monophase and well-defined at the atomic scale, to be decoupled from the supporting substrate, and to remain stable at the application conditions. Here, we present three systems meeting this elusive set of requirements: M-TCNQ (M = Ni, Fe, Mn) on epitaxial graphene/Ir(111). We study the systems experimentally by scanning tunneling microscopy, low energy electron microscopy and X-ray photoelectron spectroscopy.
View Article and Find Full Text PDFHeterogeneous catalysts based on subnanometer metal clusters often exhibit strongly size-dependent properties, and the addition or removal of a single atom can make all the difference. Identifying the most active species and deciphering the reaction mechanism is extremely difficult, however, because it is often not clear how the catalyst evolves in operando. Here, we use a combination of atomically resolved scanning probe microscopies, spectroscopic techniques, and density functional theory (DFT)-based calculations to study CO oxidation by a model Pt/FeO(001) "single-atom" catalyst.
View Article and Find Full Text PDFOxide-supported single-atom catalysts are commonly modeled as a metal atom substituting surface cation sites in a low-index surface. Adatoms with dangling bonds will inevitably coordinate molecules from the gas phase, and adsorbates such as water can affect both stability and catalytic activity. Herein, we use scanning tunneling microscopy (STM), noncontact atomic force microscopy (ncAFM), and X-ray photoelectron spectroscopy (XPS) to show that high densities of single Rh adatoms are stabilized on α-FeO(11̅02) in the presence of 2 × 10 mbar of water at room temperature, in marked contrast to the rapid sintering observed under UHV conditions.
View Article and Find Full Text PDFAtomic-scale investigations of metal oxide surfaces exposed to aqueous environments are vital to understand degradation phenomena (e.g., dissolution and corrosion) as well as the performance of these materials in applications.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2019
The interaction of water with the most prominent surfaces of FeO, (001) and (111), is directly compared using a combination of temperature-programmed desorption, temperature-programmed low energy electron diffraction (TP LEED), and scanning probe microscopies. Adsorption on the (√2 × √2)R45°-reconstructed surface of FeO(001) is strongly influenced by the surface reconstruction, which remains intact at all coverages. Close to the completion of the first monolayer, however, the ad-layer adopts a longer-range (2 × 2) superstructure.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
January 2018
The α-FeO(11̅02) surface (also known as the hematite r-cut or (012) surface) was studied using low-energy electron diffraction (LEED), X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), scanning tunneling microscopy (STM), noncontact atomic force microscopy (nc-AFM), and density functional theory (DFT)+ calculations. Two surface structures are stable under ultrahigh vacuum (UHV) conditions; a stoichiometric (1 × 1) surface can be prepared by annealing at 450 °C in ≈10 mbar O, and a reduced (2 × 1) reconstruction is formed by UHV annealing at 540 °C. The (1 × 1) surface is close to an ideal bulk termination, and the undercoordinated surface Fe atoms reduce the surface bandgap by ≈0.
View Article and Find Full Text PDFThe interaction of CO with the FeO(001)-(√2 × √2)R45° surface was studied using temperature-programmed desorption (TPD), scanning tunneling microscopy (STM), and X-ray photoelectron spectroscopy (XPS), the latter both under ultrahigh vacuum (UHV) conditions and in CO pressures up to 1 mbar. In general, the CO-FeO interaction is found to be weak. The strongest adsorption occurs at surface defects, leading to small TPD peaks at 115, 130, and 190 K.
View Article and Find Full Text PDFThe adsorption of CO on the FeO(001)-(2 × 2)R45° surface was studied experimentally using temperature programmed desorption (TPD), photoelectron spectroscopies (UPS and XPS), and scanning tunneling microscopy. CO binds most strongly at defects related to Fe, including antiphase domain boundaries in the surface reconstruction and above incorporated Fe interstitials. At higher coverages,CO adsorbs at fivefold-coordinated Fe sites with a binding energy of 0.
View Article and Find Full Text PDF