Publications by authors named "Zdenek Dohnalek"

The development of efficient Pd single-atom catalysts for CO oxidation, crucial for environmental protection and fundamental studies, has been hindered by their limited reactivity and thermal stability. Here, we report a thermally stable TiO-supported Pd single-atom catalyst that exhibits enhanced intrinsic CO oxidation activity by tunning the local coordination of Pd atoms via H treatment. Our comprehensive characterization reveals that H-treated Pd single atoms have reduced nearest Pd-O coordination and form short-distanced Pd-Ti coordination, effectively stabilizing Pd as isolated atoms even at high temperatures.

View Article and Find Full Text PDF

A fundamental understanding of the transition metal dichalcogenide (TMDC)-metal interface is critical for their utilization in a broad range of applications. We investigate how the deposition of palladium (Pd), as a model metal, on WTe(001), leads to the assembly of Pd into clusters and nanoparticles. Using X-ray photoemission spectroscopy, scanning tunneling microscopy imaging, and ab initio simulations, we find that Pd nucleation is driven by the interaction with and the availability of mobile excess tellurium (Te) leading to the formation of Pd-Te clusters at room temperature.

View Article and Find Full Text PDF

The dynamics of reactive intermediates are important in catalysis for understanding transient species, which can drive reactivity and the transport of species to reaction centers. In particular, the interplay between surface-bound carboxylic acids and carboxylates is important for numerous chemical transformations, including CO hydrogenation and ketonization. Here, we investigate the dynamics of acetic acid on anatase TiO(101) using scanning tunneling microscopy experiments and density functional theory calculations.

View Article and Find Full Text PDF

In catalysis, MgO is often used to modify the acid-base properties of support oxides and to stabilize supported metal atoms and particles on oxides. In this study, we show how the sublimation of MgO powder can be used to deposit MgO monomers, hither on anatase TiO(101). A combination of x-ray electron spectroscopy, high-resolution scanning tunneling microscopy, and density functional theory is employed to gain insight into the MgO monomer binding, electronic and vibrational properties, and thermal stability.

View Article and Find Full Text PDF

Hierarchically ordered oxides are of critical importance in material science and catalysis. Unfortunately, the design and synthesis of such systems remains a key challenge to realizing their potential. In this study, we demonstrate how the deposition of small oligomeric (MoO) clusters-formed by the facile sublimation of MoO powders-leads to the self-assembly of locally ordered arrays of immobilized mono-oxo (MoO) species on anatase TiO(101).

View Article and Find Full Text PDF

The interaction of methanol with iron oxide surfaces is of interest due to its potential in hydrogen storage and from a fundamental perspective as a chemical probe of reactivity. We present here a study examining the adsorption and reaction of methanol on magnetite FeO(001) at cryogenic temperatures using a combination of temperature programmed desorption, x-ray photoelectron spectroscopy, and scanning tunneling microscopy. The methanol desorption profile from FeO(001) is complex, exhibiting peaks at 140 K, 173 K, 230 K, and 268 K, corresponding to the desorption of intact methanol, as well as peaks at 341 K and 495 K due to the reaction of methoxy intermediates.

View Article and Find Full Text PDF

Graphene oxides are promising materials for novel electronic devices or anchoring of the active sites for catalytic applications. Here we focus on understanding the atomic oxygen (AO) binding and mobility on different regions of graphene (Gr) on Ru(0001). Differences in the Gr/Ru lattices result in the superstructure, which offers an array of distinct adsorption sites.

View Article and Find Full Text PDF

The adsorption and photochemistry of CO on rutile TiO(110) are studied with scanning tunneling microscopy (STM), temperature-programmed desorption, and angle-resolved photon-stimulated desorption (PSD) at low temperatures. Site occupancies, when weighted by the concentration of each kind of adsorption site on the reduced surface, show that the adsorption probability is the highest for the bridging oxygen vacancies (V). The probability distribution for the different adsorption sites corresponds to very small differences in CO adsorption energies (<0.

View Article and Find Full Text PDF

Titanium dioxide/graphene composites have recently been demonstrated to improve the photocatalytic activity of TiO in visible light. To better understand the interactions of TiO with graphene we have investigated the growth of TiO nanoclusters on single-layer graphene/Ru(0001) using scanning tunneling microscopy (STM) and Auger electron spectroscopy (AES). Deposition of Ti in the O background at 300 K resulted in the formation of nanoclusters nucleating on intrinsic defects in the graphene (Gr) layer.

View Article and Find Full Text PDF

Understanding water/solid interactions is of great importance in a variety of fundamental and technological processes, such as photocatalytic water splitting, heterogeneous catalysis, electrochemistry, and corrosion. This review describes recent advancements in the molecular-level understanding of water adsorption, dissociation and clustering on model surfaces of metal oxides, achieved primarily by combining scanning probe microscopies with ensemble-averaged techniques and density functional theory calculations. Factors controlling how water binds and clusters on the coordinatively unsaturated metal cations of different oxide surfaces are discussed.

View Article and Find Full Text PDF

Understanding adsorbed water and its dissociation to surface hydroxyls on oxide surfaces is key to unraveling many physical and chemical processes, yet the barrier for its deprotonation has never been measured. In this study, we present direct evidence for water dissociation equilibrium on rutile-TiO(110) by combining supersonic molecular beam, scanning tunneling microscopy (STM), and ab initio molecular dynamics. We measure the deprotonation/protonation barriers of 0.

View Article and Find Full Text PDF

Understanding the reactivity of H2 is of critical importance in controlling and optimizing many heterogeneous catalytic processes, particularly in cases where its adsorption on the catalyst surface is rate-limiting. In this work, we examine the temperature-dependent adsorption of H2/D2 on the clean RuO2(110) surface using the King and Wells molecular beam approach, temperature-programmed desorption (TPD), and scanning tunneling microscopy (STM). We show that the adsorption probability of H2/D2 on this surface is highly temperature-dependent, decreasing from ∼0.

View Article and Find Full Text PDF

The coordination of H2 to a metal center via polarization of its σ bond electron density, known as a Kubas complex, is the means by which H2 chemisorbs at Ru(4+) sites on the rutile RuO2(110) surface. This distortion of electron density off an interatomic axis is often described as a 'banana-bond.' We show that the Ru-H2 banana-bond can be destabilized and split using visible light.

View Article and Find Full Text PDF

The ability to synthesize well-ordered two-dimensional materials under ultra-high vacuum and directly characterize them by other techniques in situ can greatly advance our current understanding on their physical and chemical properties. In this paper, we demonstrate that iso-oriented α-MoO3 films with as low as single monolayer thickness can be reproducibly grown on SrTiO3(001) substrates by molecular beam epitaxy ((010)(MoO3)‖(001)(STO), [100](MoO3)‖[100](STO) or [010](STO)) through a self-limiting process. While one in-plane lattice parameter of the MoO3 is very close to that of the SrTiO3 (a(MoO3) = 3.

View Article and Find Full Text PDF

RuO2 has proven to be indispensable as a co-catalyst in numerous systems designed for photocatalytic water splitting. In this study, we have carried out a detailed mechanistic study of water behavior on the most stable RuO2 face, RuO2(110), by employing variable-temperature scanning tunneling microscopy and density functional theory calculations. We show that water monomers adsorb molecularly on Ru sites, become mobile above 238 K, diffuse along the Ru rows, and form water dimers.

View Article and Find Full Text PDF

Cerium oxide is an important catalytic material known for its ability to store and release oxygen, and as such, it has been used in a range of applications, both as an active catalyst and as a catalyst support. Using scanning tunneling microscopy and Auger electron spectroscopy, we investigated oxygen interactions with CeOx nanoclusters on a complete graphene monolayer-covered Ru(0001) surface at elevated temperatures (600-725 K). Under oxidizing conditions (PO2 = 1 × 10(-7) Torr), oxygen intercalation under the graphene layer is observed.

View Article and Find Full Text PDF

By using a combination of scanning tunneling microscopy (STM), density functional theory (DFT), and secondary-ion mass spectroscopy (SIMS), we explored the interplay and relative impact of surface versus subsurface defects on the surface chemistry of rutile TiO2 . STM results show that surface O vacancies (VO ) are virtually absent in the vicinity of positively charged subsurface point defects. This observation is consistent with DFT calculations of the impact of subsurface defect proximity on VO formation energy.

View Article and Find Full Text PDF

Understanding hydrogen formation on TiO2 surfaces is of great importance, as it could provide fundamental insight into water splitting for hydrogen production using solar energy. In this work, hydrogen formation from glycols having different numbers of methyl end-groups has been studied using temperature-programmed desorption on reduced, hydroxylated, and oxidized rutile TiO2(110) surfaces. The results from OD-labeled glycols demonstrate that gas-phase molecular hydrogen originates exclusively from glycol hydroxyl groups.

View Article and Find Full Text PDF

The adsorption, desorption, and displacement kinetics of H2O and CO2 on TiO2(110) are investigated using temperature programmed desorption (TPD) and molecular beam techniques. The TPD spectra for both H2O and CO2 have well-resolved peaks corresponding to desorption from bridge-bonded oxygen (Ob), Ti5c, and defect sites in order of increasing peak temperature. Analysis of the saturated surface spectrum for both species reveals that the corresponding adsorption energies on all sites are greater for H2O than for CO2.

View Article and Find Full Text PDF

Supported early transition metal oxides have important applications in numerous catalytic reactions. In this article, we review the synthesis and activity of well-defined model WO3 and MoO3 catalysts that are prepared via deposition of cyclic gas-phase (WO3)3 and (MoO3)3 clusters generated by sublimation of WO3 and MoO3 powders. Conversion of small aliphatic alcohols to alkenes, aldehydes/ketones, and ethers is employed to probe the structure-activity relationships on model catalysts ranging from unsupported (WO3)3 and (MoO3)3 clusters embedded in alcohol matrices, to (WO3)3 clusters supported on surfaces of other oxides, and epitaxial and nanoporous WO3 films.

View Article and Find Full Text PDF

Scanning tunneling microscopy is employed to follow elemental steps in conversion of ethylene glycol and 1,3-propylene glycol on partially reduced TiO2(110) as a function of temperature. Mechanistic details about the observed processes are corroborated by density functional theory calculations. The use of these two diol reactants allows us to compare and contrast the chemistries of two functionally similar molecules with different steric constraints, thereby allowing us to understand how molecular geometry may influence the observed chemical reactivity.

View Article and Find Full Text PDF

The interactions of ethylene glycol with a partially reduced rutile TiO2(110) surface have been studied using temperature programmed desorption (TPD). The saturation coverage on surface Ti rows is determined to be 0.43 monolayer (ML), slightly less than one ethylene glycol per two Ti sites.

View Article and Find Full Text PDF

The interactions of CO2 with oxygen adatoms (Oa's) on rutile TiO2(110) surfaces have been studied using scanning tunneling microscopy. At 50 K CO2 is found to adsorb preferentially on five-coordinated Ti sites (Ti5c's) next to Oa's rather than on oxygen vacancies (VO's) (the most stable adsorption sites on reduced TiO2(110)). Temperature dependent studies show that after annealing to 100-160 K, VO's become preferentially populated indicating the presence of a kinetic barrier for CO2 adsorption onto the VO's.

View Article and Find Full Text PDF

A series of NH(3) temperature-programmed desorption (TPD) spectra were taken after dosing NH(3) at 70 K on rutile TiO(2)(110)-1 × 1 surfaces with oxygen vacancy (V(O)) concentrations of ~0% (p-TiO(2)) and 5% (r-TiO(2)), respectively, to study the effect of V(O)s on the desorption energy of NH(3) as a function of coverage, θ. Our results show that in the zero coverage limit, the desorption energy of NH(3) on r-TiO(2) is 115 kJ mol(-1), which is 10 kJ mol(-1) less than that on p-TiO(2). The desorption energy from the Ti(4+) sites decreases with increasing θ due to repulsive NH(3)-NH(3) interactions and approaches ~55 kJ mol(-1) upon the saturation of Ti(4+) sites (θ = 1 monolayer, ML) on both p- and r-TiO(2).

View Article and Find Full Text PDF

The dehydration of 1-propanol on nanoporous WO3 films prepared via ballistic deposition at ∼20 K has been investigated using temperature-programmed desorption, infrared reflection absorption spectroscopy, and density functional theory. The as-deposited films are extremely efficient in 1-propanol dehydration to propene. This activity is correlated with the presence of dioxo O═W═O groups, whereas monooxo W═O species are shown to be inactive.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionlhhdhvm2j2vnbpapnimfsqn007um05sc): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once