We have created a spatially homogeneous polariton condensate in thermal equilibrium, up to very high condensate fraction. Under these conditions, we have measured the coherence as a function of momentum and determined the total coherent fraction of this boson system from very low density up to density well above the condensation transition. These measurements reveal a consistent power law for the coherent fraction as a function of the total density over nearly three orders of its magnitude.
View Article and Find Full Text PDFReversible lasing performance degradation is investigated on an uncoated actively- biased GaAs/AlGaAs mid-infrared quantum cascade laser (MIR-QCL) facet. The surface temperature rises (ΔT) on the MIR QCL are characterized before and after the device undergoes an accelerated aging burn-in test, followed by hydrogen plasma treatment. The data is visualized by spatially resolved time-domain thermoreflectance (SR-TDTR) microscopy.
View Article and Find Full Text PDFThe realization of a semiconductor near-unity absorber in the infrared will provide new capabilities to transform applications in sensing, health, imaging, and quantum information science, especially where portability is required. Typically, commercially available portable single-photon detectors in the infrared are made from bulk semiconductors and have efficiencies well below unity. Here, we design a novel semiconductor nanowire metamaterial, and show that by carefully arranging an InGaAs nanowire array and by controlling their shape, we demonstrate near-unity absorption efficiency at room temperature.
View Article and Find Full Text PDFThis work presents a six-level scheme terahertz (THz) quantum cascade laser (QCL) design in which the resonant-phonon (RP) and the scattering-assisted (SA) injection/extraction are combined within a single AlGaAs/GaAs based structure. By utilizing extra excited states for hybrid extraction/injection channels, this design minimizes the appearance of an intermediate negative differential resistance (NDR) before the lasing threshold. The final negative differential resistance is observed up to 260K and a high characteristic temperature of 259 K is measured.
View Article and Find Full Text PDFWe report planar integration of tapered terahertz (THz) frequency quantum cascade lasers (QCLs) with metasurface waveguides that are designed to be spoof surface plasmon (SSP) out-couplers by introducing periodically arranged SSP scatterers. The resulting surface-emitting THz beam profile is highly collimated with a divergence as narrow as ~4° × 10°, which indicates a good waveguiding property of the metasurface waveguide. In addition, the low background THz power implies a high coupling efficiency for the THz radiation from the laser cavity to the metasurface structure.
View Article and Find Full Text PDFThe impacts of side exposed side strips (for high order modes suppression) and ridge width on terahertz (THz) quantum cascade laser (QCL) performance are investigated through numerical modeling and verified experimentally. Our results show that shrinking ridge width of THz QCLs with metal-metal waveguides leads to a substantial degradation of device performance due to higher optical loss resulting from the side-exposed strips in the highly-doped top contact layer. Nevertheless, the side-exposed strips facilitate single mode operation by strongly suppressing higher-order modes.
View Article and Find Full Text PDFWe measured the lattice and subband electronic temperatures of terahertz quantum cascade devices based on the optical phonon-scattering assisted active region scheme. While the electronic temperature of the injector state (j = 4) significantly increases by ΔT = T(e)(4) - T(L) ~40 K, in analogy with the reported values in resonant phonon scheme (ΔT ~70-110 K), both the laser levels (j = 2,3) remain much colder with respect to the latter (by a factor of 3-5) and share the same electronic temperature of the ground level (j = 1). The electronic population ratio n(2)/n(1) shows that the optical phonon scattering efficiently depopulates the lower laser level (j = 2) up to an electronic temperature T(e) ~180 K.
View Article and Find Full Text PDFWe demonstrate InGaAs mid-infrared quantum well infrared photodetectors (MIR PV-QWIPs) that enable cost-effective mature GaAs-based detection and imaging technologies, with exceptional material uniformity, reproducibility, and yield, over a large area, with high spectral selectivity, innate polarization sensitivity, radiation hardness, high detectivity, and high speed operation at TEC temperatures without bias.
View Article and Find Full Text PDFWe present here a case of ectopic cervical pregnancy terminated in the birth of a live 1800 g infant, whose further development takes normal course. Wrong evaluation of the place of the developing pregnancy resulted in its growth up to 34th week. Finally, the placement of pregnancy was established after delivering the woman with a caesarean section, on the basis of macro and microscopic evaluation of the removed uterus.
View Article and Find Full Text PDF