Objective: We present the improved method of recognition of sustained ventricular tachycardia (SVT) based on new filtering technique (FIR), extended signal-averaged electrocardiography (SAECG) description by 9 parameters and the application of support vector machine (SVM) classifier.
Methods: The dataset consisted of 376 patients (100 patients with sustained ventricular tachycardia after myocardial infarction (MI) labelled as class SVT+, 176 patients without sustained ventricular tachycardia after MI and 77 healthy persons, 50% of data were left for validation. The analysis of SAECG was performed by 2 types of filtration: low pass four-pole IIR Butterworth filter and FIR filter with Kaiser window.