Use of high numerical aperture focusing with negative longitudinal spherical aberration is shown to enable deep (> microm), high aspect ratio, nano-scale-width holes to be machined into the surface of a fused-silica (SiO(2)) substrate with single pulses from a 200 fs, 4 microJ Ti-Sapphire laser source. The depths of the nano-holes are characterized by use of a non-destructive acetate replication technique and are confirmed by imaging of sectioned samples with a dual focused ion beam/scanning electron microscope.
View Article and Find Full Text PDFWe theoretically investigate the use of spatial light modulators (SLMs) for transformation of the collected fluorescence field in a high numerical aperture confocal microscope, for improved molecular orientation determination in single-molecule spectroscopy. The electric vector field in the back aperture of the microscope objective is calculated using the Weyl representation and taking into account components emitted at angles above the critical angle of the coverglass-immersion fluid interface. The coherently imaged fluorescence undergoes spatially-dependent phase and polarization transformation by the SLMs, before it passes to a polarization beamsplitter, and is subsequently focused onto two pinholes and single-photon detectors.
View Article and Find Full Text PDF