Advance in the design of molecular photoswitches - adapters that convert light into changes at molecular level - opens up exciting possibilities in preparing smart polymers, drugs photoactivated inside humans, or light-fueled nanomachines that might in the future operate in our bloodstream. Hemipiperazines are recently reported biocompatible molecular photoswitches based on cyclic dipeptides. Here we report a multistimuli-responsive hemipiperazine-based switch that reacts on light, solvents, acidity, or metal ions.
View Article and Find Full Text PDFThis study explores the potential of controlling organismal development with light by using reversible photomodulation of activity in bioactive compounds. Specifically, our research focuses on plinabulin 1, an inhibitor of tubulin dynamics that contains a photochromic motif called hemipiperazine. The two isomeric forms, Z-1 and E-1, can partially interconvert with light, yet show remarkable thermal stability in darkness.
View Article and Find Full Text PDFPhotochromic supramolecular hydrogels are versatile materials that show macroscopic effects upon irradiation, like liquefaction or shape changes. Here, we demonstrate a simple photochromic cyclic dipeptide (2,5-diketopiperazine-based) supergelator, composed of (S)-lysine and an azobenzene analogue of phenylalanine, that forms supramolecular hydrogels even at 0.1 wt% loading.
View Article and Find Full Text PDFHemipiperazines are a recently discovered class of peptide-derived molecular photoswitches with high biocompatibility and therapeutic potential. Here, for the first time we describe photochromism of heterocyclic hemipiperazines. They demonstrate long thermal lifetimes, and enlarged band separation between photoisomers.
View Article and Find Full Text PDFMolecular photoswitches transform light energy into reversible structural changes. Their combination with known pharmacophores often allows for photomodulation of the biological activity. The effort to apply such compounds in photopharmacology as light-activated pro-drugs is, however, hampered by serious activity reduction upon pharmacophore modifications, or limited biostability.
View Article and Find Full Text PDFAntimitotic agents such as the clinically approved vinca alkaloids, taxanes and epothilone can arrest cell growth during interphase and are therefore among the most important drugs available for treating cancer. These agents suppress microtubule dynamics and thus interfere with intracellular transport, inhibit cell proliferation and promote cell death. Because these drugs target biological processes that are essential to all cells, they face an additional challenge when compared to most other drug classes.
View Article and Find Full Text PDFSupramolecular smart materials can quickly elicit macroscopic changes upon external stimulation. Here we report that an azobenzene-containing cyclic dipeptide can form composite supramolecular hydrogels with alginate based on the charge complementarity, at lower loading than the critical gelation concentrations of either component. The gels can reversibly dissipate to fluids with UV light.
View Article and Find Full Text PDFMolecular photoswitches triggered with red or NIR light are optimal for photomodulation of complex biological systems, including efficient penetration of the human body for therapeutic purposes ("therapeutic window"). Yet, they are rarely reported, and even more rarely functional under aqueous conditions. In this work, fluorinated azobenzenes are shown to exhibit efficient E→Z photoisomerization with red light (PSS >75 % Z) upon conjugation with unsaturated substituents.
View Article and Find Full Text PDFLight is a nearly ideal stimulus for molecular systems. It delivers information encoded in the form of wavelengths and their intensities with high precision in space and time. Light is a mild trigger that does not permanently contaminate targeted samples.
View Article and Find Full Text PDFPrimordial sequence signatures in modern proteins imply ancestral origins tracing back to simple peptides. Although short peptides seldom adopt unique folds, metal ions might have templated their assembly into higher-order structures in early evolution and imparted useful chemical reactivity. Recapitulating such a biogenetic scenario, we have combined design and laboratory evolution to transform a zinc-binding peptide into a globular enzyme capable of accelerating ester cleavage with exacting enantiospecificity and high catalytic efficiency ( / ~ 10 M s).
View Article and Find Full Text PDFPhotoresponsive smart materials transform light energy into sophisticated functions. They find increasing biomedical applications in light-induced drug-release and photopharmacology, because they can provide the desired therapeutic effect locally due to precise spatiotemporal dosage control. However, the majority of reported studies rely on cytotoxic UV light that penetrates tissues poorly.
View Article and Find Full Text PDFAn azobenzene-containing cyclic dipeptide PAP-DKP-Lys is a photoresponsive low-MW hydrogelator. The gelation process can be triggered with temperature, pH, light, and ionic strength. The resulting self-healing gels can encapsulate dsDNA or an anticancer drug doxorubicin, and release them in a light-dependent manner.
View Article and Find Full Text PDFDesigned retroaldolases have utilized a nucleophilic lysine to promote carbon-carbon bond cleavage of β-hydroxy-ketones via a covalent Schiff base intermediate. Previous computational designs have incorporated a water molecule to facilitate formation and breakdown of the carbinolamine intermediate to give the Schiff base and to function as a general acid/base. Here we investigate an alternative active-site design in which the catalytic water molecule was replaced by the side chain of a glutamic acid.
View Article and Find Full Text PDFNucleophilic catalysis is a general strategy for accelerating ester and amide hydrolysis. In natural active sites, nucleophilic elements such as catalytic dyads and triads are usually paired with oxyanion holes for substrate activation, but it is difficult to parse out the independent contributions of these elements or to understand how they emerged in the course of evolution. Here we explore the minimal requirements for esterase activity by computationally designing artificial catalysts using catalytic dyads and oxyanion holes.
View Article and Find Full Text PDFAn engineered variant of lumazine synthase, a nonviral capsid protein with a negatively charged luminal surface, is shown to encapsulate up to 100 positively supercharged green fluorescent protein (GFP) molecules in vitro. Packaging can be achieved starting either from intact, empty capsids or from capsid fragments by incubation with cargo in aqueous buffer. The yield of encapsulated GFP correlates directly with the host/guest mixing ratio, providing excellent control over packing density.
View Article and Find Full Text PDFThe lack of efficient identification and isolation methods for specific molecular binders has fundamentally limited drug discovery. Here, we have developed a method to select peptide nucleic acid (PNA) encoded molecules with specific functional properties from combinatorially generated libraries. This method consists of three essential stages: (1) creation of a Lab-on-Bead library, a one-bead, one-sequence library that, in turn, displays a library of candidate molecules, (2) fluorescence microscopy-aided identification of single target-bound beads and the extraction--wet or dry--of these beads and their attached candidate molecules by a micropipette manipulator, and (3) identification of the target-binding candidate molecules via amplification and sequencing.
View Article and Find Full Text PDFThe screening for treatment-induced enzyme activities offers the opportunity to discover important regulatory mechanisms and the identification of potential targets for anti-cancer therapies. A novel screening technique was applied to screen substrate peptide sequences for proteolytic activities up- or down-regulated by ionizing radiation in tumor cells. One specific substrate sequence was cleaved in control cell extracts but to a smaller extent in irradiated cell extracts and investigated in detail.
View Article and Find Full Text PDFNucleic acid-templated reactions leading to a fluorescent product represent an attractive strategy for the detection and imaging of cellular nucleic acids. Herein we report the use of a Staudinger reaction to promote the reduction of profluorescent azidorhodamine. The use of two cell-permeable GPNA probes, one labeled with the profluorescent azidorhodamine and the other with trialkylphosphine, enabled the detection of the mRNA encoding O-6-methylguanine-DNA methyltransferase in intact cells.
View Article and Find Full Text PDFThis tutorial review serves as an introduction to the use of oligonucleotides and in particular peptide nucleic acids (PNAs) to encode function beyond heredity. Applications in chemical biology are reviewed starting with the use of nucleic acid tags to program self-assembled microarrays of small and macromolecules, followed by the use of nucleic acid templated reactions for the purpose of DNA or RNA sensing and finally, the use of nucleic acid templates to display ligands.
View Article and Find Full Text PDFTemplated reduction of low fluorescence azidocoumarin-PNA conjugate to high fluorescence aminocoumarin was achieved using a catalytic amount of DNA with single nucleotide resolution.
View Article and Find Full Text PDF