Publications by authors named "Zbigniew P Kortylewicz"

The physiological functions of butyrylcholinesterase (BChE) and its role in malignancy remain unexplained. Our studies in children newly diagnosed with neuroblastoma indicated that BChE expressions is proportional to MYCN amplification suggesting that pathogenesis of high-risk disease may be related to the persistent expression of abnormally high levels of tumor-associated BChE. BChE-deficient neuroblastoma cells (KO [knockout]) were produced from MYCN -amplified BE(2)-C cells (WT [wild-type]) by the CRISPR-Cas9 targeted disruption of the BCHE locus.

View Article and Find Full Text PDF

Neuroblastoma, the most common extracranial solid tumor in children, accounts for nearly 8% of childhood cancers in the United States. It is a disease with pronounced clinical and biological heterogeneities. The amplification of MYCN, whose key tumorigenic functions include the promotion of proliferation, facilitation of the cell's entry into the S phase, and prevention of cells from leaving the cell cycle, correlates with poor prognosis.

View Article and Find Full Text PDF

Resistance of cancer to chemo- and radiotherapy remains a major clinical problem. This study contributes to the ongoing search for agents that can bypass this resistance by developing a novel antimitotic theranostic. Methyl -[5-(3'-iodobenzoyl)-1-benzimidazol-2-yl]carbamates and were synthesized from a common precursor or its 3'-stannylated derivative.

View Article and Find Full Text PDF

The role of theranostics in cancer management is growing so is the selection of vectors used to deliver these modalities to cancer cells. We describe biological evaluation of a novel theranostic agent targeted to microtubules. Methyl N-[5-(3'-[ I]iodobenzoyl)-1H-benzimidazol-2-yl]carbamate (1) and methyl N-[5-(3'-[ I]iodobenzoyl)-1H-benzimidazol-2-yl]carbamate (2) were synthesized from a common precursor 3'-stannylated derivative (4).

View Article and Find Full Text PDF

High risk neuroblastoma often recurs, even with aggressive treatments. Clinical evidence suggests that proliferative activities are predictive of poor outcomes. This report describes syntheses, characterization, and biological properties of theranostic guanidines that target norepinephrine transporter and undergo intracellular processing, and subsequently their catabolites are efficiently incorporated into DNA of proliferating neuroblastoma cells.

View Article and Find Full Text PDF

Microtubules are a target for a broad spectrum of drugs used as chemotherapeutics to treat hematological malignancies and solid tumors. Most of these drugs have significant dose-limiting toxicities including peripheral neuropathies that can be debilitating and permanent. In an ongoing effort to develop safer and more effective drugs, benzimidazole-based compounds are being developed as replacement for vincristine and similar agents.

View Article and Find Full Text PDF

Blood-based biomarkers are important in the detection of the disease and in the assessment of responses to therapy. In this study, butyrylcholinesterase was evaluated as a potential biomarker in newly diagnosed neuroblastoma (NB) patients at diagnosis and longitudinally during treatment. Plasma butyrylcholinesterase activities in age-matched and sex-matched children were used as controls.

View Article and Find Full Text PDF

Background: The androgen receptor (AR) plays a dominant role in the pathogenesis of prostate cancer. 5-Radioiodo-3'-O-(17β-succinyl-5α-androstan-3-one)-2'-deoxyuridin-5'-yl phosphate (RISAD-P) is an AR-targeting reagent developed for noninvasive assessment of AR and proliferative status of the AR-expressing tumors, and for molecular radiotherapy with Auger electron-emitting radionuclides. In this study, the preclinical toxicity and targeting potential of RISAD-P was evaluated.

View Article and Find Full Text PDF

Background: The androgen receptor (AR) axis, the key growth and survival pathway in prostate cancer, remains a prime target for drug development. 5-Radioiodo-3'-O-(17β-succinyl-5α-androstan-3-one)-2'-deoxyuridin-5'-yl phosphate (RISAD-P) is the AR-seeking reagent developed for noninvasive assessment of AR and proliferative status, and for molecular radiotherapy of prostate cancer with Auger electron-emitting radionuclides.

Methods: RISAD-P radiolabeled with 123I, 124I, and 125I were synthesized using a common stannylated precursor.

View Article and Find Full Text PDF

Targeted molecular radiotherapy opens unprecedented opportunities to eradicate cancer cells with minimal irradiation of normal tissues. Described in this study are radioactive cyclosaligenyl monophosphates designed to deliver lethal doses of radiation to cancer cells. These compounds can be radiolabeled with SPECT- and PET-compatible radionuclides as well as radionuclides suitable for Auger electron therapies.

View Article and Find Full Text PDF

Pancreatic cancer does not respond to a single-agent imatinib therapy. Consequently, multimodality treatments are contemplated. Published data indicate that in colorectal cancer, imatinib and radioimmunotherapy synergize to delay tumor growth.

View Article and Find Full Text PDF

High levels of androgen receptor (AR) are often indicative of recurrent, advanced, or metastatic cancers. These conditions are also characterized by a high proliferative fraction. 5-Radioiodo-3'-O-(17beta-succinyl-5alpha-androstan-3-one)-2'-deoxyuridine 8 and 5-radioiodo-3'-O-(17beta-succinyl-5alpha-androstan-3-one)-2'-deoxyuridin-5'-yl monophosphate 13 target AR.

View Article and Find Full Text PDF

Diagnostic agents enabling characterization of multidrug resistance (MDR) in tumors can aid in the selection of chemotherapy regimens. We report here synthesis and evaluation of radiopharmaceuticals based on the second-generation MDR-reversing drug MS-209. 5-[3-{4-(2-Phenyl-2-(4'-[(125)I]iodo-phenyl)acetyl)piperazin-1-yl}-2-hydroxypropoxy]quino-line (17) was prepared from the 4'-tributylstannyl precursor (16) in >95% radiochemical yield.

View Article and Find Full Text PDF

Whereas radioimmunotherapy of hematologic malignancies has evolved into a viable treatment option, the responses of solid tumors to radioimmunotherapy are discouraging. The likely cause of this problem is the interstitial hypertension inherent to all solid tumors. Remarkable improvements in tumor responses to radioimmunotherapy were discovered after the inclusion of STI571 in the therapy regimen.

View Article and Find Full Text PDF

Transplantation of isolated hepatocytes may eventually replace a whole liver transplantation for the treatment of selected liver metabolic disorders and acute hepatic failure. To understand the behavior of transplanted hepatocytes, methods for longitudinal assessment of functional activity and survival of hepatocyte transplants must be developed. Targeting of asialoglycoprotein receptor (ASGPr) with various radiolabeled or Gd-labeled constructs of asialofetuin (AF) is expected to allow noninvasive and quantitative assessments of the ASGPr status in functioning hepatocytes before and after the transplant.

View Article and Find Full Text PDF