Purpose: An important aspect in the prevention and treatment of coronary artery disease is the functional evaluation of narrowed blood vessels. Medical image-based Computational Fluid Dynamic methods are currently increasingly being used in the clinical setting for flow studies of cardio vascular system. The aim of our study was to confirm the feasibility and functionality of a non-invasive computational method providing information about hemodynamic significance of coronary stenosis.
View Article and Find Full Text PDFBackground: The stenosis of the coronary arteries is usually caused by atherosclerosis. Hemodynamic significance of patient-specific coronary stenoses and the risk of its progression may be assessed by comparing the hemodynamic effects induced by flow disorders. The present study shows how stenosis degree and variable flow conditions in coronary artery affect the oscillating shear index, residence time index, pressure drop coefficient and fractional flow reserve.
View Article and Find Full Text PDFThe Polish ventricular assist device (Polvad) has been used successfully in clinical contexts for many years. The device contains two single-disc valves, one at the inlet and one at the outlet connector of the pneumatic pump. Unfortunately, in recent years, a problem has occurred with the availability of single-disc valves.
View Article and Find Full Text PDFThe limitations associated with conventional valve prosthesis have led to a search for alternatives. One potential approach is tissue engineering. Most tissue engineering studies have described the biomechanical properties of heart valves derived from adult pigs.
View Article and Find Full Text PDFObjective: The introduction of right ventricle to pulmonary artery (RV-PA) conduit in the Norwood procedure for hypoplastic left heart syndrome resulted in a higher survival rate in many centers. A higher diastolic aortic pressure and a higher mean coronary perfusion pressure were suggested as the hemodynamic advantage of this source of pulmonary blood flow. The main objective of this study was the comparison of two models of Norwood physiology with different types of pulmonary blood flow sources and their hemodynamics.
View Article and Find Full Text PDF