Various iron-oxide nanoparticles have been in use for a long time as therapeutic and imaging agents and for supplemental delivery in cases of iron-deficiency. While all of these products have a specified size range of ∼ 40 nm and above, efforts are underway to produce smaller particles, down to ∼ 1 nm. Here, we show that after a 24-h exposure of SHSY-5Y human neuroblastoma cells to 10 μg/ml of 10 and 30 nm ferric oxide nanoparticles (Fe-NPs), cellular dopamine content was depleted by 68 and 52 %, respectively.
View Article and Find Full Text PDFThe carnitine palmitoyl transferase (CPT) system is a multiprotein complex with catalytic activity localized within a core represented by CPT1 and CPT2 in the outer and inner membrane of the mitochondria, respectively. Two proteins, the acyl-CoA synthase and a translocase also form part of this system. This system is crucial for the mitochondrial beta-oxidation of long-chain fatty acids.
View Article and Find Full Text PDFDiet in human health is no longer simple nutrition, but in light of recent research, especially nutrigenomics, it is linked via evolution and genetics to cell health status capable of modulating apoptosis, detoxification, and appropriate gene response. Nutritional deficiency and disease especially lack of vitamins and minerals is well known, but more recently, epidemiological studies suggest a role of fruits and vegetables, as well as essential fatty acids and even red wine (French paradox), in protection against disease. In the early 1990s, various research groups started considering the use of antioxidants (e.
View Article and Find Full Text PDFExperimental evidence suggests that oxidative and nitrative mechanisms account for much of the dopaminergic neuronal injury in Parkinson's disease (PD). The ubiquitously expressed non-receptor tyrosine kinase c-Abl is activated by oxidative stress and thus, may play a role in redox-mediated neurodegeneration. Recently, we reported that c-Abl is activated in PD and that a c-Abl inhibitor mitigated neuronal damage in a PD animal model, suggesting a novel neuroprotective therapeutic approach.
View Article and Find Full Text PDFRotenone, a widely used pesticide, causes a syndrome in rats that replicates, both pathologically and behaviorally, the symptoms of Parkinson's disease (PD). In the present study, we sought to determine if a chronic exposure to rotenone, resulting in dopaminergic loss, could also lead to peripheral neuronal damage related to motor dysfunction. Adult male Sprague-Dawley rats (n=14) were treated with rotenone (1 or 2mg/kg, s.
View Article and Find Full Text PDFInt J Environ Res Public Health
December 2011
Parkinson's disease (PD) is a common neurodegenerative movement disorder that is characterized pathologically by a progressive loss of midbrain dopaminergic neurons and by protein inclusions, designated Lewy bodies and Lewy neurites. PD is one of the most common neurodegenerative diseases, affecting almost 1% of the population over 60 years old. Although the symptoms and neuropathology of PD have been well characterized, the underlying mechanisms and causes of the disease are still not clear.
View Article and Find Full Text PDFEncephalopathy is evidenced as an altered mental state with various neurological symptoms, such as memory and cognitive problems. The type of a substance-evoked encephalopathy will depend on the drug, substance, or combination being abused. The categories into which we could place the various abused substances could be tentatively divided into stimulants, amphetamines, hallucinogens, narcotics, inhalants, anesthetics, anabolic steroids, and antipsychotics/antidepressants.
View Article and Find Full Text PDFOxidative stress and secondary excitotoxicity, due to cellular energy deficit, are major factors playing roles in 3-nitropropionic acid (3-NPA) induced mitochondrial dysfunction. Acute or chronic exposure to 3-NPA also leads to neuronal degeneration in different brain regions. The present study quantitatively assessed peripheral neuropathy induced by chronic exposure to 3-NPA in rats.
View Article and Find Full Text PDFMethamphetamine (METH) abuse and addiction present a major problem in the United States and globally. Oxidative stress associated with exposure to METH mediates to the large extent METH-evoked neurotoxicity. While there are currently no medications approved for treating METH addiction, its pharmacology provides opportunities for potential pharmacotherapeutic adjuncts to behavioral therapy in the treatment of METH addiction.
View Article and Find Full Text PDFA novel gold phosphate complex called Black-Gold II with improved myelin staining properties has been developed. It differs from its predecessor, Black-Gold, in that it is highly water soluble at room temperature. This unique physical property confers a number of advantages for the high resolution staining of myelinated fibers.
View Article and Find Full Text PDFJ Neurochem
May 2008
Excitotoxicity and disrupted energy metabolism are major events leading to nerve cell death in neurodegenerative disorders. These cooperative pathways share one common aspect: triggering of oxidative stress by free radical formation. In this work, we evaluated the effects of the antioxidant and energy precursor, levocarnitine (L-CAR), on the oxidative damage and the behavioral, morphological, and neurochemical alterations produced in nerve tissue by the excitotoxin and free radical precursor, quinolinic acid (2,3-pyrindin dicarboxylic acid; QUIN), and the mitochondrial toxin, 3-nitropropionic acid (3-NP).
View Article and Find Full Text PDFDrug abuse is associated with significant health risk. Whether drug abusers are at a higher risk of suffering the metabolic syndrome is not widely known. The metabolic syndrome is a cluster of metabolic abnormalities, including hyperinsulinemia, hypertension, dyslipidemia, and abdominal obesity, and is probably triggered by initial imbalances at the cellular level in various critical metabolic pathways.
View Article and Find Full Text PDFNutritional deficiency in combination with drug abuse may increase risk of developing the metabolic syndrome by augmenting cell damage, excitotoxicity, reducing energy production, and lowering the antioxidant potential of the cells. We have reviewed here the following points: effects of drugs of abuse on nutrition and brain metabolism; effects of nutrition on actions of the drugs of abuse; drug abuse and probability of developing metabolic syndrome; role of genetic vulnerability in nutrition/drug abuse and brain damage; and the role of neuroprotective supplements in drug abuse. Nutrition education is an essential component of substance abuse treatment programs and can enhance substance abuse treatment outcomes.
View Article and Find Full Text PDFAdult, male Sprague-Dawley rats were injected with 3-ni-tropropionic acid (3-NPA) at 30 mg/kg or methamphetamine (METH) at 20 mg/kg alone or following pretreatment with L-cartnitine (LC) at 100 mg/kg. Rectal temperature was measured before and 4 h following treatment. Animals were sacrificed at 4 h posttreatment.
View Article and Find Full Text PDFThis study tested the hypothesis that the expression of uncoupling proteins (UCPs) and dopamine (DA) system genes is responsive to 3-nitropropionic acid (3-NPA) neurotoxic effects and to the neuroprotective effects of the mitochondrial enhancer, L-carnitine (LC), in the rat striatum. Inactivation of mitochondrial succinate dehydrogenase (SDH) by 3-NPA results in hypoxic brain damage. Hypoxic conditions induce uncoupling protein-2 (UCP-2).
View Article and Find Full Text PDFA number of strategies using the nutritional approach are emerging for the protection of the brain from damage caused by metabolic toxins, age, or disease. Neural dysfunction and metabolic imbalances underlie many diseases, and the inclusion of metabolic modifiers may provide an alternative and early intervention approach that may prevent further damage. Various models have been developed to study the impact of metabolism on brain function.
View Article and Find Full Text PDFWe have shown previously that pretreatment with l-carnitine (LC) prior to 3-nitropropionic acid (3-NPA) exposure, while not significantly attenuating succinate dehydrogenase (SDH) inhibition, prevented hypothermia and oxidative stress. The plant and fungal toxin, 3-NPA, acts as an inhibitor of mitochondrial function via irreversible inactivation of the mitochondrial inner membrane enzyme, SDH. Inhibition of SDH disturbs electron transport, leading to cellular energy deficits and oxidative stress-related neuronal injury.
View Article and Find Full Text PDF3-Nitropropionic acid (3-NPA) is a model mitochondrial inhibitor that causes selective neurodegeneration in brain. 3-NPA-induced neurodegeneration occurs via a secondary neurotoxicity, caused initially by ATP depletion and redox changes in the cell. It is known that the hippocampal degeneration caused by mitochondrial dysfunction affects learning and memory, cognitive functions commonly disturbed in neurodegenerative diseases.
View Article and Find Full Text PDFThe inhibitor of mitochondrial enzyme succinate dehydrogenase, 3-nitropropionic acid (3-NPA), induces cellular energy deficit followed by oxidative stress, secondary excitotoxicity and neuronal degeneration. The fast activation of Jun and Fos proteins and other proteins encoding inducible transcription factors (ITFs) occurs in most tissues upon exposure to a variety of stressors including exposure to mitochondrial inhibitors. However, the consequences of this activation can differ dramatically in different organs.
View Article and Find Full Text PDFThe damage to the central nervous system that is observed after administration of either methamphetamine (METH) or 1-methyl-4-phenylpyridinium (MPP+), the neurotoxic metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), is known to be linked to dopamine (DA). The underlying neurotoxicity mechanism for both METH and MPP+ seem to involve free radical formation and impaired mitochondrial function. The MPP+ is thought to selectively kill nigrostriatal dopaminergic neurons by inhibiting mitochondrial complex I, with cell death being attributed to oxidative stress damage to these vulnerable DA neurons.
View Article and Find Full Text PDFL-Carnitine (L-C) is a naturally occurring quaternary ammonium compound endogenous in all mammalian species and is a vital cofactor for the mitochondrial oxidation of fatty acids. Fatty acids are utilized as an energy substrate in all tissues, and although glucose is the main energetic substrate in adult brain, fatty acids have also been shown to be utilized by brain as an energy substrate. L-C also participates in the control of the mitochondrial acyl-CoA/CoA ratio, peroxisomal oxidation of fatty acids, and the production of ketone bodies.
View Article and Find Full Text PDFA plant and fungal toxin, 3-NPA, acts as an inhibitor of mitochondrial function via irreversible inactivation of the mitochondrial inner membrane enzyme, succinate dehydrogenase (SDH). Inhibition of SDH disturbs electron transport and leads to cellular energy deficits and neuronal injury. We have shown that pretreatment with l-carnitine, while not significantly attenuating SDH inhibition, prevented hypothermia and oxidative stress-associated increased activity of free radical-scavenging enzymes.
View Article and Find Full Text PDFDomoic acid, a potent excitotoxic analogue of glutamate and kainate, may cause seizures, amnesia, and sometimes death in humans consuming contaminated shellfish. Continuous behavioral observations and recordings of the electrocorticogram (ECoG, via bipolar, epidural electrodes) were obtained from nonanesthetized rats for 2 h after intraperitoneal injection with either saline, 2.2, or 4.
View Article and Find Full Text PDF3-Nitropropionic acid (3-NPA) is an inhibitor of the mitochondrial enzyme succinate dehydrogenase (SDH, a part of complex II) that links the tricarboxylic acid (TCA) cycle to the respiratory electron transport chain. 3-NPA inactivates SDH by covalently and irreversibly binding to its active site. We previously examined the effects of 3-NPA on the histochemical activity of SDH in vivo, by using the reduction of a yellow tetrazolium dye (nitro blue tetrazolium) to a blue formazan as an indicator.
View Article and Find Full Text PDFAnn N Y Acad Sci
May 2003
The neuroprotective action of l-carnitine (LC) in the rat model of 3-nitropropionic acid (3-NPA)-induced mitochondrial dysfunction was examined. 3-NPA is known to produce decreases in neuronal ATP levels via inhibition of the succinate dehydrogenase (SDH) at complex II of the mitochondrial electron transport chain. SDH is involved in reactions of the Krebs cycle and oxidative phosphorylation, and its inhibition leads to both necrosis and apoptosis.
View Article and Find Full Text PDF