PLoS One
September 2024
Worldwide incidence of kidney diseases has been rising. Thus, recent research has focused on zebrafish, whose fast development and innate regeneration capacity allow identifying factors influencing renal processes. Among these poorly studied factors are extracellular matrix (ECM) proteins like Fibronectin (Fn) essential in various tissues but not yet evaluated in a renal context.
View Article and Find Full Text PDFThe NBOMe (N-2-methoxybenzyl-phenethylamines) family of compounds are synthetic hallucinogens derived from the 2C series. Although this family of compounds has been responsible for multiple cases of acute toxicity and several deaths around the world, to date there are few studies. These compounds act as potent 5-HT receptor agonists, including the hallucinogen 25C-NBOMe (2-(4-chloro-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine).
View Article and Find Full Text PDFAcute leukemia is a heterogeneous set of diseases affecting children and adults. Current prognostic factors are not accurate predictors of the clinical outcome of adult patients and the stratification of risk groups remains insufficient. For that reason, this study proposes a multifactorial analysis which integrates clinical parameters, tumor characterization and behavioral analysis in zebrafish.
View Article and Find Full Text PDFProper organogenesis depends upon defining the precise dimensions of organ progenitor territories. Kidney progenitors originate within the intermediate mesoderm (IM), but the pathways that set the boundaries of the IM are poorly understood. Here, we show that the bHLH transcription factor Hand2 limits the size of the embryonic kidney by restricting IM dimensions.
View Article and Find Full Text PDFThe endocardium forms the inner lining of the heart tube, where it enables blood flow and also interacts with the myocardium during the formation of valves and trabeculae. Although a number of studies have identified regulators in the morphogenesis of the myocardium, relatively little is known about the molecules that control endocardial morphogenesis. Prior work has implicated the bHLH transcription factor Tal1 in endocardial tube formation: in zebrafish embryos lacking Tal1, endocardial cells form a disorganized mass within the ventricle and do not populate the atrium.
View Article and Find Full Text PDFHeart formation requires the fusion of bilateral cardiomyocyte populations as they move towards the embryonic midline. The bHLH transcription factor Hand2 is essential for cardiac fusion; however, the effector genes that execute this function of Hand2 are unknown. Here, we provide in zebrafish the first evidence for a downstream component of the Hand2 pathway that mediates cardiac morphogenesis.
View Article and Find Full Text PDFAmongst animal species, there is enormous variation in the size and complexity of the heart, ranging from the simple one-chambered heart of Ciona intestinalis to the complex four-chambered heart of lunged animals. To address possible mechanisms for the evolutionary adaptation of heart size, we studied how growth of the simple two-chambered heart in zebrafish is regulated. Our data show that the embryonic zebrafish heart tube grows by a substantial increase in cardiomyocyte number.
View Article and Find Full Text PDFBackground: In addition to inhibiting the excitation conduction process in peripheral nerves, local anesthetics (LAs) cause toxic effects on the central nervous system, cardiovascular system, neuromuscular junction, and cell metabolism. Different postoperative neurological complications are ascribed to the cytotoxicity of LAs, but the underlying mechanisms remain unclear. Because the clinical concentrations of LAs far exceed their EC(50) for inhibiting ion channel activity, ion channel block alone might not be sufficient to explain LA-induced cell death.
View Article and Find Full Text PDFTransient increases in extracellular K+ are observed under various conditions, including repetitive neuronal firing, anoxia, ischemia and hypoglycemic coma. We studied changes in cytoplasmic Ca2+ ([Ca2+]cyt) evoked by pulses of KCl in human neuroblastoma SH-SY5Y cells and rat dorsal root ganglia (DRG) neurons at 37 degrees C. A "pulse" of KCl evoked two transient increases in [Ca2+]cyt, one upon addition of KCl (K+on) and the other upon removal of KCl (K+off).
View Article and Find Full Text PDFBackground: The authors previously reported that the isoflurane-caused reduction of the carbachol-evoked cytoplasmic Ca transient increase ([Ca]cyt) was eliminated by K or caffeine-pretreatment. In this study the authors investigated whether the isoflurane-sensitive component of the carbachol-evoked [Ca]cyt transient involved Ca influx through the plasma membrane.
Methods: Perfused attached human neuroblastoma SH-SY5Y cells were exposed to carbachol (1 mm, 2 min) in the absence and presence of isoflurane (1 mm) and in the absence and presence of extracellular Ca (1.
In human SH-SY5Y neuroblastoma cells, two distinct intracellular Ca2+ stores, a KCl-/caffeine-sensitive and a carbachol-/IP3-sensitive store, were demonstrated previously. In this study, responses of these two intracellular Ca2+ stores to thapsigargin were characterized. Ca2+-release from these stores was evoked either by high K+ (100 mM KCl) or by 1 mM carbachol, and changes in the intracellular Ca2+ level were monitored using Fura-2 fluorimetry.
View Article and Find Full Text PDFBackground: Many muscarinic functions are relevant to anesthesia, and alterations in muscarinic activity affect the anesthetic/analgesic potency of various drugs. Volatile anesthetics have been shown to depress muscarinic receptor function, and inhibition of the muscarinic signaling pathway alters the minimal alveolar anesthetic concentration of inhaled anesthetics. The purpose of this investigation was to determine in a neuronal cell which source of Ca2+ underlying the carbachol-evoked transient increase in cytoplasmic Ca2+ was reduced by isoflurane.
View Article and Find Full Text PDFBackground: Local anesthetics (LAs) are known to inhibit voltage-dependent Na+ channels, as well as K+ and Ca2+ channels, but with lower potency. Since cellular excitability and responsiveness are largely determined by intracellular Ca2+ availability, sites along the Ca2+ signaling pathways may be targets of LAs. This study was aimed to investigate the LA effects on depolarization and receptor-mediated intracellular Ca2+ changes and to examine the role of Na+ and K+ channels in such functional responses.
View Article and Find Full Text PDF