Non-canonical nucleic acid structures play significant roles in cellular processes through selective interactions with proteins. While both natural and artificial G-quadruplexes have been extensively studied, the functions of i-motifs remain less understood. This study investigates the artificial aptamer BV42, which binds strongly to influenza A virus hemagglutinin and unexpectedly retains its i-motif structure even at neutral pH.
View Article and Find Full Text PDFStress resistance-conferring membrane pyrophosphatase (mPPase) found in microbes and plants couples pyrophosphate hydrolysis with H transport out of the cytoplasm. There are two opposing views on the energy-coupling mechanism in this transporter: the pumping is associated with either pyrophosphate binding to mPPase or the hydrolysis step. We used our recently developed stopped-flow pyranine assay to measure H transport into mPPase-containing inverted membrane vesicles on the timescale of a single turnover.
View Article and Find Full Text PDFNon-canonical nucleic acid structures possess an ability to interact selectively with proteins, thereby exerting influence over various intracellular processes. Numerous studies indicate that genomic G-quadruplexes and i-motifs are involved in the regulation of transcription. These structures are formed temporarily during the unwinding of the DNA double helix; and their direct determination is a rather difficult task.
View Article and Find Full Text PDFThe quality of food is one of the emergent points worldwide. Many microorganisms produce toxins that are harmful for human and animal health. In particular, mycotoxins from Fusarium fungi are strictly controlled in cereals.
View Article and Find Full Text PDFDNA aptamers are oligonucleotides that specifically bind to target molecules, similar to how antibodies bind to antigens. We identified an aptamer named MEZ that is highly specific to the receptor-binding domain, RBD, of the SARS-CoV-2 spike protein from the Wuhan-Hu-1 strain. The SELEX procedure was utilized to enrich the initial 31-mer oligonucleotide library with the target aptamer.
View Article and Find Full Text PDFSurface-enhanced Raman spectroscopy (SERS)-based aptasensors for virus determination have attracted a lot of interest recently. This approach provides both specificity due to an aptamer component and a low limit of detection due to signal enhancement by a SERS substrate. The most successful SERS-based aptasensors have a limit of detection (LoD) of 10-100 viral particles per mL (VP/mL) that is advantageous compared to polymerase chain reactions.
View Article and Find Full Text PDFSurface-enhanced Raman scattering (SERS) is a powerful technique for decoding of 2-5-component mixes of analytes. Low concentrations of analytes and complex biological media are usually non-decodable with SERS. Recognition molecules, such as antibodies and aptamers, provide an opportunity for a specific binding of ultra-low contents of analyte dissolved in complex biological media.
View Article and Find Full Text PDFThis paper aims to develop a humanistic model of corporate social responsibility in e-commerce, relying on high technology in an artificial intelligence economy. The research is based on the experience of the top 30 publicly traded e-commerce companies, the 16 most responsible companies in the retail industry in the USA, and the leading global and Russian e-commerce business structures in 2020-2021. Based on econometric modeling, it is substantiated that the humanization (qualitative criterion) of jobs provides an increase in revenues of e-commerce businesses to a greater extent than an increase in the number (quantitative criterion) of jobs.
View Article and Find Full Text PDFAptasensors based on surface-enhanced Raman spectroscopy (SERS) are of high interest due to the superior specificity and low limit of detection. It is possible to produce stable and cheap SERS-active substrates and portable equipment meeting the requirements of point-of-care devices. Here we combine the membrane filtration and SERS-active substrate in the one pot.
View Article and Find Full Text PDFIn this paper, we propose a technology for the rapid and sensitive detection of the whole viral particles of SARS-CoV-2 using double-labeled DNA aptamers as recognition elements together with the SERS method for detecting the optical response. We report on the development of a SERS-aptasensor based on a reproducible lithographic SERS substrate, featuring the combination of high speed, specificity, and ultrasensitive quantitative detection of SARS-CoV-2 virions. The sensor makes it possible to identify SARS-CoV-2 in very low concentrations (the limit of detection was 100 copies/mL), demonstrating a sensitivity level comparable to the existing diagnostic golden standard-the reverse transcription polymerase chain reaction.
View Article and Find Full Text PDFThe recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has posed a great challenge for the development of ultra-fast methods for virus identification based on sensor principles. We created a structure modeling surface and size of the SARS-CoV-2 virus and used it in comparison with the standard antigen SARS-CoV-2-the receptor-binding domain (RBD) of the S-protein of the envelope of the SARS-CoV-2 virus from the Wuhan strain-for the development of detection of coronaviruses using a DNA-modified, surface-enhanced Raman scattering (SERS)-based aptasensor in sandwich mode: a primary aptamer attached to the plasmonic surface-RBD-covered Ag nanoparticle-the Cy3-labeled secondary aptamer. Fabricated novel hybrid plasmonic structures based on "Ag mirror-SiO-nanostructured Ag" demonstrate sensitivity for the detection of investigated analytes due to the combination of localized surface plasmons in nanostructured silver surface and the gap surface plasmons in a thin dielectric layer of SiO between silver layers.
View Article and Find Full Text PDFPhosphorylated adenosine derivatives are important biological molecules with diverse biological functions connected with the energetic balance of the cell, biosynthesis of cell components and regulation of protein activity. Measurement of these compounds provides information about the cell signalling in the body as well as the quantity of microorganisms in the environment. Surface-enhanced Raman spectroscopy (SERS) is an optical method that provides a unique spectrum of a substance at low concentrations.
View Article and Find Full Text PDFBiosensors combining the ultrahigh sensitivity of surface-enhanced Raman scattering (SERS) and the specificity of nucleic acid aptamers have recently drawn attention in the detection of respiratory viruses. The most sensitive SERS-based aptasensors allow determining as low as 10 virus particles per mL that is 100-fold lower than any antibody-based lateral flow tests but 10-100-times higher than a routine polymerase chain reaction with reversed transcription (RT-PCR). Sensitivity of RT-PCR has not been achieved in SERS-based aptasensors despite the usage of sophisticated SERS-active substrates.
View Article and Find Full Text PDFRequirements of speed and simplicity in testing stimulate the development of modern biosensors. Electrolyte-gated organic field-effect transistors (EGOFETs) are a promising platform for ultrasensitive, fast, and reliable detection of biological molecules for low-cost, point-of-care bioelectronic sensing. Biosensitivity of the EGOFET devices can be achieved by modification with receptors of one of the electronic active interfaces of the transistor gate or organic semiconductor surface.
View Article and Find Full Text PDFNucleic acid aptamers specific to S-protein and its receptor binding domain (RBD) of SARS-CoV-2 (severe acute respiratory syndrome-related coronavirus 2) virions are of high interest as potential inhibitors of viral infection and recognizing elements in biosensors. Development of specific therapy and biosensors is complicated by an emergence of new viral strains bearing amino acid substitutions and probable differences in glycosylation sites. Here, we studied affinity of a set of aptamers to two Wuhan-type RBD of S-protein expressed in Chinese hamster ovary cell line and that differ in glycosylation patterns.
View Article and Find Full Text PDFDuring the COVID-19 pandemic, the development of sensitive and rapid techniques for detection of viruses have become vital. Surface-enhanced Raman scattering (SERS) is an appropriate tool for new techniques due to its high sensitivity. SERS materials modified with short-structured oligonucleotides (DNA aptamers) provide specificity for SERS biosensors.
View Article and Find Full Text PDFNucleosides Nucleotides Nucleic Acids
July 2024
Aptamers are structured oligonucleotides that specifically bind their targets. Oligonucleotides can be assembled in large nanostructures via intermolecular duplexes or G-quadruplexes. Addition of aptamers can be used to create nanostructures that bind specifically certain targets.
View Article and Find Full Text PDFG-quadruplex oligonucleotides (GQs) exhibit specific anti-proliferative activity in human cancer cell lines, and they can selectively inhibit the viability/proliferation of cancer cell lines vs. non-cancer ones. This ability could be translated into a cancer treatment, in particular for glioblastoma multiform (GBM), which currently has a poor prognosis and low-efficiency therapeutic treatments.
View Article and Find Full Text PDFNucleic acid aptamers are generally accepted as promising elements for the specific and high-affinity binding of various biomolecules. It has been shown for a number of aptamers that the complexes with several related proteins may possess a similar affinity. An outstanding example is the G-quadruplex DNA aptamer RHA0385, which binds to the hemagglutinins of various influenza A virus strains.
View Article and Find Full Text PDFDevelopment of sensitive techniques for rapid detection of viruses is on a high demand. Surface-enhanced Raman spectroscopy (SERS) is an appropriate tool for new techniques due to its high sensitivity. DNA aptamers are short structured oligonucleotides that can provide specificity for SERS biosensors.
View Article and Find Full Text PDFZh Vopr Neirokhir Im N N Burdenko
September 2020
A review is devoted to analysis of the prospects of theranostics for multiform glioblastoma with monoclonal antibodies to the epidermal growth factor receptor (EGFR). Treatment of various malignancies demonstrated high potential of the use of EGFR. However, in case of glioblastoma, the effectiveness of monoclonal antibodies to EGFR is constrained by the absence of informative criteria for assessing the effectiveness of diagnosis and treatment of disease.
View Article and Find Full Text PDFViral infections are among the main causes of morbidity and mortality of humans; sensitive and specific diagnostic methods for the rapid identification of viral pathogens are required. Surface-enhanced Raman spectroscopy (SERS) is one of the most promising techniques for routine analysis due to its excellent sensitivity, simple and low-cost instrumentation and minimal required sample preparation. The outstanding sensitivity of SERS is achieved due to tiny nanostructures which must be assembled before or during the analysis.
View Article and Find Full Text PDF