Publications by authors named "Zavjalov E"

The development of T cell receptor-engineered T cells (TCR-T) targeting intracellular antigens is a promising strategy for treating solid tumors; however, the mechanisms underlying their effectiveness remain poorly understood. In this study, we employed advanced techniques to investigate the functional state of T cells engineered with retroviral vectors to express a TCR specific for the NY-ESO-1 157-165 peptide in the HLA-A*02:01 context. Flow cytometry revealed a predominance of naïve T cells.

View Article and Find Full Text PDF

Orthotopic transplantation of glioblastoma cells in the brain of laboratory mice is a common animal model for studying brain tumors. It was shown that 1H magnetic resonance spectroscopy (MRS) enables monitoring of the tumor's occurrence and its development during therapy based on the ratio of several metabolites. However, in studying new approaches to the therapy of glioblastoma in the model of orthotopic xenotransplantation of glioma cells into the brain of mice, it is necessary to understand which metabolites are produced by a growing tumor and which are the result of tumor cells injection along the modeling of the pathology.

View Article and Find Full Text PDF

The present work demonstrates the structure variation of hexarhenium anionic cluster units [{ReS}(CN)(OH)] (n = 0, 2, 4) as the strategy to develop Mn-containing nanoparticles (NPs) exhibiting pH-dependent leaching. The dicyanotetrahydroxo complex [{ReS}(CN)(OH)] is the optimal for the synthesis of the Mn-based NPs with a lamellar shape exhibiting the pH-dependent aggregation and magnetic relaxation behavior. The pH-dependent behavior of the NPs derives from the easy protonation of the apical hydroxo ligands of [{ReS}(CN)(OH)] cluster, which triggers partial leaching of Mn ions and aggregation of the NPs driven by the surface neutralization.

View Article and Find Full Text PDF

Boron neutron capture therapy (BNCT) is one of the most appealing radiotherapy modalities, whose localization can be further improved by the employment of boron-containing nanoformulations, but the fabrication of biologically friendly, water-dispersible nanoparticles (NPs) with high boron content and favorable physicochemical characteristics still presents a great challenge. Here, we explore the use of elemental boron (B) NPs (BNPs) fabricated using the methods of pulsed laser ablation in liquids as sensitizers of BNCT. Depending on the conditions of laser-ablative synthesis, the used NPs were amorphous (a-BNPs) or partially crystallized (pc-BNPs) with a mean size of 20 nm or 50 nm, respectively.

View Article and Find Full Text PDF

TCR-like chimeric antigen receptor (CAR-T) cell therapy has emerged as a game-changing strategy in cancer immunotherapy, offering a broad spectrum of potential antigen targets, particularly in solid tumors containing intracellular antigens. In this study, we investigated the cytotoxicity and functional attributes of in vitro-generated T-lymphocytes, engineered with a TCR-like CAR receptor precisely targeting the cancer testis antigen MAGE-A4. Through viral transduction, T-cells were genetically modified to express the TCR-like CAR receptor and co-cultured with MAGE-A4-expressing tumor cells.

View Article and Find Full Text PDF

Sexual selection is considered as one of the leading factors of evolutionary development. In the conditions of incessant competition, specialized methods of attracting individuals of the opposite sex as well as criteria for assessing the quality of a sexual partner have been formed. In order for animals to rely on signaling from sexual partners, the signal must reflect the morpho-physiological status of animals.

View Article and Find Full Text PDF

Aim: The peripheral tumor growth is accompanied by the accumulation of inflammatory mediators in the blood that can negatively influence blood-brain barrier function and neuronal structure and develop the cancer-associated depression. The aim of the study was to evaluate the neurobiological effects of lithium on hepatocellular carcinoma mice model.

Methods: In this study we analyzed the locomotor activity of lithium-treated tumor-bearing mice using the Phenomaster instrument.

View Article and Find Full Text PDF

Glioblastoma (GB) is an aggressive cancer with a high probability of recurrence, despite active chemoradiotherapy with temozolomide (TMZ) and dexamethasone (DXM). These systemic drugs affect the glycosylated components of brain tissue involved in GB development; however, their effects on heparan sulfate (HS) remain unknown. Here, we used an animal model of GB relapse in which SCID mice first received TMZ and/or DXM (simulating postoperative treatment) with a subsequent inoculation of U87 human GB cells.

View Article and Find Full Text PDF

The silica nanoparticles (SNs) co-doped with paramagnetic ([Mn(HL)],) and luminescent ([Ru(dipy)]) complexes are represented. The specific distribution of [Mn(HL)] within the SNs allows to achieve about ten-fold enhancing in magnetic relaxivities in comparison with those of [Mn(HL)] in solutions. The leaching of [Mn(HL)] from the shell can be minimized through the co-doping of [Ru(dipy)] into the core of the SNs.

View Article and Find Full Text PDF

Light-induced functional pinealectomy was simulated in C57BL/6 mice by 14-day exposure to constant lighting. Immunophenotyping of CD3 and CD3 thymocytes was performed by staining with CD3-APC antibodies followed by flow cytofluorometry. To study the cell cycle distribution of thymus cells, the content of intracellular DNA was measured by the level PI inclusion.

View Article and Find Full Text PDF

A paradoxical reduction in anxiety levels in chronic predator stress paradigm (PS) in Sprague-Dawley rats has recently been shown in previous works. In this paper, we studied the possible neurobiological mechanism of this phenomenon. We segregated PS-exposed Sprague-Dawley rats into the high- and low-anxiety phenotypes.

View Article and Find Full Text PDF

In our previous study, we showed that discarded cardiac tissue from the right atrial appendage and right ventricular myocardium is an available source of functional endothelial and smooth muscle cells for regenerative medicine and tissue engineering. In the study, we aimed to find out what benefits are given by vascular cells from cardiac explants used for seeding on vascular patches engrafted to repair vascular defects . Additionally, to make the application of these cells safer in regenerative medicine we tested an approach that arrested mitotic division to avoid the potential tumorigenic effect of dividing cells.

View Article and Find Full Text PDF

mice (carrying a mutation in the gene encoding leptin receptor) show autophagy suppression. Our aim was to evaluate the effect of autophagy inducer trehalose on liver and heart autophagy in mice and to study inflammation dysregulation and the suitability of chitinases' expression levels as diabetes markers. Thirty-eight male mice and C57/BL mice (control) were used.

View Article and Find Full Text PDF

(1) Background: accelerator-based neutron sources are a new frontier for BNCT but many technical issues remain. We aimed to study such issues and results in larger-animal BNCT (cats and dogs) with naturally occurring, malignant tumors in different locations as an intermediate step in translating current research into clinical practice. (2) Methods: 10 pet cats and dogs with incurable, malignant tumors that had no treatment alternatives were included in this study.

View Article and Find Full Text PDF

Boron neutron capture therapy (BNCT) can become an instrument for patients with malignant neoplasms of the rectum and colon. Here we evaluate the effectiveness of BNCT performed at the accelerator based epithermal neutron source at G. I.

View Article and Find Full Text PDF

The presence of humans and animals under long-term continuous lighting leads to a suppression of melatonin synthesis, that is, to light-induced functional pinealectomy (LIFP), and the development of desynchronosis. To create LIFP, C57Bl/6 mice were kept under 24-hour lighting (24hL) for 14 days. The animals in the control group were kept under standard lighting conditions.

View Article and Find Full Text PDF

(1) Background: Developments in accelerator-based neutron sources moved boron neutron capture therapy (BNCT) to the next phase, where new neutron radiation parameters had to be studied for the treatment of cancers, including brain tumors. We aimed to further improve accelerator-BNCT efficacy by optimizing dosimetry control, beam parameters, and combinations of boronophenylalanine (BPA) and sodium borocaptate (BSH) administration in U87MG xenograft-bearing immunodeficient mice with two different tumor locations. (2) Methods: The study included two sets of experiments.

View Article and Find Full Text PDF

Autophagy attenuation has been found in neurodegenerative diseases, aging, diabetes mellitus, and atherosclerosis. In experimental models of neurodegenerative diseases, the correction of autophagy in the brain reverses neuronal and behavioral deficits and hence seems to be a promising therapy for neuropathologies. Our aim was to study the effect of an autophagy inducer, trehalose, on brain autophagy and behavior in a genetic model of diabetes with signs of neuronal damage (db/db mice).

View Article and Find Full Text PDF

Boron neutron capture therapy (BNCT) is based on the ability of the boron-10 (B) isotope to capture epithermal neutrons, as a result of which the isotope becomes unstable and decays into kinetically active elements that destroy cells where the nuclear reaction has occurred. The boron-carrying compounds-L-para-boronophenylalanine (BPA) and sodium mercaptoundecahydro-closo-dodecaborate (BSH)-have low toxicity and, today, are the only representatives of such compounds approved for clinical trials. For the effectiveness and safety of BNCT, a low boron content in normal tissues and substantially higher content in tumor tissue are required.

View Article and Find Full Text PDF

Obesity and diabetes mellitus are known to lead to the development of metabolic syndrome and non-alcoholic fatty liver disease (NAFLD). The mechanisms of programmed cell death are actively involved in maintaining cellular homeostasis along development of NAFLD. Proteins of the BCL-2 family are key regulators of physiological and pathological apoptosis.

View Article and Find Full Text PDF

Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2019;23(5):582-587 (in Russian) Page 587, in Acknowledgements instead of The animals and behavioral testing are supported by the budget project (No. 0324-2019-0041).

View Article and Find Full Text PDF

Multifunctional gold nanoparticles (AuNPs) may serve as a scaffold to integrate diagnostic and therapeutic functions into one theranostic system, thereby simultaneously facilitating diagnosis and therapy and monitoring therapeutic responses. Herein, albumin-AuNP theranostic agents have been obtained by conjugation of an anticancer nucleotide trifluorothymidine (TFT) or a boron-neutron capture therapy drug undecahydro--dodecaborate (BH) to bimodal human serum albumin (HSA) followed by reacting of the albumin conjugates with AuNPs. In vitro studies have revealed a stronger cytotoxicity by the AuNPs decorated with the TFT-tagged bimodal HSA than by the boronated albumin conjugates.

View Article and Find Full Text PDF

In recent years, silicon dioxide nanoparticles have been widely used in medicine and the pharmaceutical industry, however, their effect on the brain has hardly been studied. We assessed the effects of long-term consumption of 5-nm amorphous silicon dioxide nanoparticles (SiO-NPs) by Syrian hamsters infected with the trematodes Opisthorchis felineus on the hippocampus and frontal cortex. Spectroscopic determination of brain neurometabolites, performed using a horizontal Magnetic Resonance Imaging system at 11.

View Article and Find Full Text PDF

Our previous study demonstrated that manganese oxide nanoparticles (MnO NP) selectively destroyed U-87MG and U251 human glioblastoma cells in vitro. MnO NP were synthesized and studied by electron microscopy. Their antitumor properties were studied in vivo on the model of immunodeficient SCID mice with subcutaneous xenografts of U-87MG human glioblastoma.

View Article and Find Full Text PDF

Boron neutron capture therapy (BNCT), a binary cancer therapeutic modality, has moved to a new phase since development of accelerator-based neutron sources and establishment of BNCT centers in Finland and Japan. That stimulated efforts for better boron delivery agent development. As liposomes have shown effective boron delivery properties and sufficient tumor retention, fluorescent liposome labelling may serve as a rapid method to study initial ability of newly synthesized liposomes to be captured by tumor cells prior to experiments on boron accumulation and neutron irradiation.

View Article and Find Full Text PDF