Publications by authors named "Zavatti M"

Chronic myeloid leukemia (CML) is characterized by the fusion protein BCR::ABL1, a constitutively active tyrosine kinase. The frontline treatment, represented by tyrosine kinase inhibitors (TKIs), has dramatically improved the clinical outcomes of patients. However, TKI resistance through various mechanisms has been reported.

View Article and Find Full Text PDF

All cells secrete various types of membrane vesicles, known as extracellular vesicles (EVs), and this process is conserved throughout evolution [...

View Article and Find Full Text PDF

Acute myeloid leukemia is a heterogeneous hematopoietic malignancy, characterized by uncontrolled clonal proliferation of abnormal myeloid progenitor cells, with poor outcomes. The internal tandem duplication (ITD) mutation of the Fms-like receptor tyrosine kinase 3 (FLT3) (FLT3-ITD) represents the most common genetic alteration in AML, detected in approximately 30% of AML patients, and is associated with high leukemic burden and poor prognosis. Therefore, this kinase has been regarded as an attractive druggable target for the treatment of FLT3-ITD AML, and selective small molecule inhibitors, such as quizartinib, have been identified and trialled.

View Article and Find Full Text PDF

BRAF mutations are present in 30-50% of cases of cutaneous melanoma, and treatment with selective BRAF and MEK inhibitors has been introduced. However, the development of resistance to these drugs often occurs. Chemo-resistant melanoma cells show increased expression of CD271, a stem cell marker that features increased migration.

View Article and Find Full Text PDF

Neuromuscular junctions (NMJs) are specialized synapses, crucial for the communication between spinal motor neurons (MNs) and skeletal muscle. NMJs become vulnerable in degenerative diseases, such as muscle atrophy, where the crosstalk between the different cell populations fails, and the regenerative ability of the entire tissue is hampered. How skeletal muscle sends retrograde signals to MNs through NMJs represents an intriguing field of research, and the role of oxidative stress and its sources remain poorly understood.

View Article and Find Full Text PDF

Background: Neuroinflammation is involved in neuronal cell death that occurs in neurodegenerative diseases such as Alzheimer's disease (AD). Microglia play important roles in regulating the brain amyloid beta (Aβ) levels, so immunomodulatory properties exerted by mesenchymal stem cells may be exploited to treat this pathology. The evidence suggests that the mechanism of action of human amniotic fluid stem cells (hAFSCs) is through their secretome, which includes exosomes (exo).

View Article and Find Full Text PDF

Hepatic encephalopathy (HE) is a neuropsychiatric syndrome caused by liver failure and by an impaired neurotransmission and neurological function caused by hyperammonemia (HA). HE, in turn, decreases the phosphorylation of protein kinase C epsilon (PKCε), contributing to the impairment of neuronal functions. Dehydroepiandrosterone (DHEA) exerts a neuroprotective effect by increasing the GABAergic tone through GABA receptor stimulation.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is an aggressive hematopoietic malignancy, characterized by a heterogeneous genetic landscape and complex clonal evolution, with poor outcomes. Mutation at the internal tandem duplication of FLT3 (FLT3-ITD) is one of the most common somatic alterations in AML, associated with high relapse rates and poor survival due to the constitutive activation of the FLT3 receptor tyrosine kinase and its downstream effectors, such as PI3K signaling. Thus, aberrantly activated FLT3-kinase is regarded as an attractive target for therapy for this AML subtype, and a number of small molecule inhibitors of this kinase have been identified, some of which are approved for clinical practice.

View Article and Find Full Text PDF

Human amniotic fluid stem cells (hAFSCs) are broadly multipotent immature progenitor cells with high self-renewal and no tumorigenic properties. These cells, even amplified, present very variable morphology, density, intracellular composition and stemness potential, and this heterogeneity can hinder their characterization and potential use in regenerative medicine. Celector (Stem Sel ltd.

View Article and Find Full Text PDF

Background: Melanoma is the leading cause of death due to cutaneous malignancy and its incidence is on the rise. Several signaling pathways, including receptor tyrosine kinases, have a role in the development and progression of melanocytic lesions and malignant melanoma. Among those, the hepatocyte growth factor (HGF)/c-met axis is emerging as a critical player because it can play a role in drug resistance.

View Article and Find Full Text PDF

Bone and muscle have been recognized as endocrine organs since they produce and secrete "hormone-like factors" that can mutually influence each other and other tissues, giving rise to a "bone-muscle crosstalk". In our study, we made use of myogenic (C2C12 cells) and osteogenic (2T3 cells) cell lines to investigate the effects of muscle cell-produced factors on the maturation process of osteoblasts. We found that the myogenic medium has inhibitory effects on bone cell differentiation and we identified sclerostin as one of the myokines produced by muscle cells.

View Article and Find Full Text PDF

Background-Osteoporosis is characterized by defects in both quality and quantity of bone tissue, which imply high susceptibility to fractures with limitations of autonomy. Current therapies for osteoporosis are mostly concentrated on how to inhibit bone resorption but give serious adverse effects. Therefore, more effective and safer therapies are needed that even encourage bone formation.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is characterized by abnormal protein aggregation, deposition of extracellular -amyloid proteins (A), besides an increase of oxidative stress. Amniotic fluid stem cells (AFSCs) should have a therapeutic potential for neurodegenerative disorders, mainly through a paracrine effect mediated by extracellular vesicles (EV). Here, we examined the effect of EV derived from human AFSCs (AFSC-EV) on the disease phenotypes in an AD neuron primary culture.

View Article and Find Full Text PDF

Stress is a typical body's natural defense to a generic physical or psychic change. A specific linking mechanism between ulcer onset and psycho-physical stress prolonged exposure has been reported. We decided to investigate the possible effects of L.

View Article and Find Full Text PDF

Human amniotic fluid stem cells (hAFSCs) are an emerging tool in regenerative medicine because they have the ability to differentiate into various lineages and efficiently improve tissue regeneration with no risk of tumorigenesis. Although hAFSCs are easily isolated from the amniotic fluid, their expansion ex vivo is limited by a quick exhaustion which impairs replicative potential and differentiation capacity. In this study, we evaluate various aging features of hAFSCs cultured at different oxygen concentrations.

View Article and Find Full Text PDF

Although the prognosis of patients with localized prostate cancer is good after surgery, with a favorable response to androgen deprivation therapy, about one third of them invariably relapse, and progress to castration-resistant prostate cancer. Overall, prostate cancer therapies remain scarcely effective, thus it is mandatory to devise alternative treatments enhancing the efficacy of surgical castration and hormone administration. Dysregulation of the phosphoinositide 3-kinase pathway has attracted growing attention in prostate cancer due to the highly frequent association of epigenetic and post-translational modifications as well as to genetic alterations of both phosphoinositide 3-kinase and PTEN to onset and/or progression of this malignancy, and to resistance to canonical androgen-deprivation therapy.

View Article and Find Full Text PDF

The cartilage tissue engineering associated with stem cell-related therapies is becoming very interesting since adult articular cartilage has limited intrinsic capacity for regeneration upon injury. Amniotic fluid stem cells (AFSC) have been shown to produce exosomes with growth factors and immunomodulating molecules that could stop tissue degradation and induce cartilage repair. Based on this state of the art, the main aim of this study was to explore the efficacy of the secreted exosomes, compared to their AFSC source, in MIA-induced animal model of osteoarthritis mimicking a chronic and degenerative process, where inflammation is also involved and lead to irreversible joint damage.

View Article and Find Full Text PDF

Mesenchymal stem cells have emerged as an important tool that can be used for tissue regeneration thanks to their easy preparation, differentiation potential and immunomodulatory activity. However, an extensive culture of stem cells prior to clinical use can lead to oxidative stress that can modulate different stem cells properties, such as self-renewal, proliferation, differentiation and senescence. The aim of this study was to investigate the aging process occurring during expansion of stem cells, obtained from amniotic fluids (AFSC) at similar gestational age.

View Article and Find Full Text PDF

It is widely accepted that the therapeutic potential of stem cells can be largely mediated by paracrine factors, also included into exosomes. Thus, stem cell-derived exosomes represent a major therapeutic option in regenerative medicine avoiding, if compared to stem cells graft, abnormal differentiation and tumor formation. Exosomes derived from mesenchymal stem cells (MSC) induce damaged tissue repair, and can also exert immunomodulatory effects on the differentiation, activation and function of different lymphocytes.

View Article and Find Full Text PDF

Background Aims: Current procedures for collection of human amniotic fluid stem cells (hAFSCs) indicate that cells cultured in a flask for 2 weeks can then be used for research. However, hAFSCs can be retrieved directly from a small amount of amniotic fluid that can be obtained at the time of diagnostic amniocentesis. The aim of this study was to determine whether direct freezing of amniotic fluid cells is able to maintain or improve the potential of a sub-population of stem cells.

View Article and Find Full Text PDF

Aims: Ferutinin is a diaucane sesquiterpene with a high estrogenic activity. Since ferutinin is able to enhance osteoblastic differentiation of human amniotic fluid stem cells (hAFSCs), the aim of this study was to evaluate the role of the estrogen receptors α (ERα) and G-protein coupled receptor 30 (GPR30) in ferutinin-mediated osteoblastic differentiation. Moreover, it was investigated if MEK/ERK and PI3K/Akt signaling pathways are involved in ferutinin-induced effects.

View Article and Find Full Text PDF

Aims: Relevant roles in follicular development and ovulation are played by maternal antigen that embryos require (MATER), product of a maternal effect gene, and by reactive oxygen species (ROS), indispensable for the induction of ovulatory genes. At the moment, the relationship between these two biological systems and their involvement in the ovarian aging have not been still clarified. The aim of the current experimental study was to analyse the age-related changes of the MATER and NOX proteins.

View Article and Find Full Text PDF

Human amniotic fluid stem cells (AFSC) are an attractive source for cell therapy due to their multilineage differentiation potential and accessibility advantages. However the clinical application of human stem cells largely depends on their capacity to expand in vitro, since there is an extensive donor-to-donor heterogeneity. Reactive oxygen species (ROS) and cellular oxidative stress are involved in many physiological and pathophysiological processes of stem cells, including pluripotency, proliferation, differentiation, and stress resistance.

View Article and Find Full Text PDF

Unlabelled: Human amniotic fluid stem cells (hAFSCs) may be useful for regenerative medicine because of their potential to differentiate into all three germ layers and to modulate immune response with different types of secretion molecules. This last issue has not been completely elucidated. The aim of this study was to investigate the secretome profile of the hAFSC, focusing on the role of hepatocyte growth factor (HGF) in immunoregulation through short and long cocultures with human peripheral blood mononuclear cells.

View Article and Find Full Text PDF

Introduction: Human term placenta has attracted increasing attention as an alternative source of stem cells for regenerative medicine since it is accessible without ethical objections. The amniotic membrane (AM) contains at least two stem cell types from different embryological origins: ectodermal amniotic epithelial stem cells, and mesodermal mesenchymal stromal cells. Among the second group we studied the characteristics of amniotic mesenchymal cells (AMC) versus the ones enriched for the commonly used surface marker c-Kit (amniotic progenitor/stem cells-ASC), a stem cell factor receptor with crucial functions in a variety of biological systems and presents in early progenitors of different origin, as been already demonstrated in the enriched chorionic stem cells.

View Article and Find Full Text PDF