Publications by authors named "Zavarin M"

Russia's invasion of Ukraine continues to have a devastating effect on the well-being of Ukrainians and their environment. We evaluated a major environmental hazard caused by the war: the potential for groundwater contamination in proximity to the Zaporizhzhia Nuclear Power Plant (NPP). We quantified groundwater vulnerability with the DRASTIC index, which was originally developed by the United States Environmental Protection Agency and has been used at various locations worldwide to assess relative pollution potential.

View Article and Find Full Text PDF

Over 4 million liters of mixed acidic (∼pH 2.5), high ionic strength (∼5 M nitrate) plutonium (Pu) processing waste were released into the 216-Z-9 (Z-9) trench at the Hanford Site, USA, and trace Pu has migrated 37 m below the trench. In this study, we used flowthrough columns to investigate Pu transport in simplified processing waste through uncontaminated Hanford sediments to determine the conditions that led to Pu migration.

View Article and Find Full Text PDF

Internationally, it has been agreed that geologic repositories for spent fuel and radioactive waste are considered the internationally agreed upon solution for intermediate and long-term disposal. In countries where traditional nuclear waste repository host rocks (e.g.

View Article and Find Full Text PDF

Plutonium (Pu) cycling and mobility in the environment can be impacted by the iron cycle and microbial community dynamics. We investigated the spatial and temporal changes of the microbiome in an iron (Fe)-rich, plutonium-contaminated, monomictic reservoir (Pond B, Savannah River Site, South Carolina, USA). The microbial community composition varied with depth during seasonal thermal stratification and was strongly correlated with redox.

View Article and Find Full Text PDF

Minor actinides are major contributors to the long-term radiotoxicity of nuclear fuels and other radioactive wastes. In this context, understanding their interactions with natural chelators and minerals is key to evaluating their transport behavior in the environment. The lanmodulin family of metalloproteins is produced by ubiquitous bacteria and lanmodulin (LanM) was recently identified as one of nature's most selective chelators for trivalent f-elements.

View Article and Find Full Text PDF

Unlike short-term laboratory experiments, studies at sites historically contaminated with radionuclides can provide insight into contaminant migration behavior at environmentally-relevant decadal timescales. One such site is Pond B, a seasonally stratified reservoir within Savannah River Site (SC, USA) has low levels (μBq L) of plutonium in the water column. Here, we evaluate the origin of plutonium using high-precision isotope measurements, investigate the impact of water column geochemistry on plutonium cycling during different stratification periods, and re-evaluate long-term mass balance of plutonium in the pond.

View Article and Find Full Text PDF

This study presents a comprehensive community data-driven surface complexation modeling framework for simulating potentiometric titration of mineral surfaces. Compiled community data for ferrihydrite, goethite, hematite, and magnetite are fit to produce representative protolysis constants that can reproduce potentiometric titration data collected from multiple literature sources. Using this framework, the impact of surface complexation model type and surface site density (SSD) on the fit quality and protolysis constants can be readily evaluated.

View Article and Find Full Text PDF

There remains a lack of knowledge regarding ecosystem transfer, transport processes, and mechanisms, which influence the long-term mobility of Pu-239 and Cs-137 in natural environments. Monitoring the distribution and migration of trace radioisotopes as ecosystem tracers has the potential to provide insight into the underlying mechanisms of geochemical cycles. This study investigated the distribution of anthropogenic radionuclides Pu-239 and Cs-137 along with total organic carbon, iron, and trace element in contaminated sediments of Pond B at the Savannah River Site (SRS).

View Article and Find Full Text PDF
Article Synopsis
  • Since 1952, the Sellafield nuclear complex has released 276 kg of liquid radioactive effluent, mainly containing plutonium, into the Irish Sea, concentrating transuranic activity in the Mudpatch sediments off the Cumbrian coast.
  • Leaching experiments on contaminated sediments from the Esk Estuary revealed that plutonium (Pu) leaching is significantly higher under anoxic conditions, suggesting environmental factors greatly influence its mobility.
  • Microbial communities in the sediments change with varying conditions, and results show that Pu leaching is greater in shallow sediments and does not correlate with total Pu, indicating a complex biogeochemical behavior.
View Article and Find Full Text PDF
Article Synopsis
  • The study highlights the challenges in creating radioactive compounds, including toxicity, high costs, and limited availability of isotopes.
  • Using polyoxometalates (POMs), researchers developed a method that allows them to create and study metal-ligand complexes with just microgram amounts of rare isotopes, like curium.
  • The research demonstrated distinct differences in the chemistry of these complexes through various analytical techniques, suggesting that this new approach could help isolate even rarer radioactive elements.
View Article and Find Full Text PDF

Subsurface microbial community distribution patterns are influenced by biogeochemical and groundwater fluxes and may inform hydraulic connections along groundwater-flow paths. This study examined the regional-scale microbial community of the Death Valley Regional Flow System and evaluated whether subsurface communities can be used to identify groundwater-flow paths between recharge and discharge areas. Samples were collected from 36 sites in three groundwater basins: Pahute Mesa-Oasis Valley (PMOV), Ash Meadows (AM), and Alkali Flat-Furnace Creek Ranch (AFFCR).

View Article and Find Full Text PDF

This paper presents a comprehensive data-to-model workflow, including a findable, accessible, interoperable, reusable (FAIR) community sorption database (newly developed LLNL Surface Complexation/Ion Exchange (L-SCIE) database) along with a data fitting workflow to efficiently optimize surface complexation reaction constants with multiple surface complexation model (SCM) constructs. This workflow serves as a universal framework to mine, compile, and analyze large numbers of published sorption data as well as to estimate reaction constants for parameterizing reactive transport models. The framework includes (1) data digitization from published papers, (2) data unification including unit conversions, and (3) data-model integration and reaction constant estimation using geochemical software PHREEQC coupled with the universal parameter estimation code PEST.

View Article and Find Full Text PDF

Actinium-based therapies could revolutionize cancer medicine but remain tantalizing due to the difficulties in studying and limited knowledge of Ac chemistry. Current efforts focus on small synthetic chelators, limiting radioisotope complexation and purification efficiencies. Here, we demonstrate a straightforward strategy to purify medically relevant radiometals, actinium(III) and yttrium(III), and probe their chemistry, using the recently discovered protein, lanmodulin.

View Article and Find Full Text PDF

Anthropogenic radionuclides, including long-lived heavy actinides such as americium and curium, represent the primary long-term challenge for management of nuclear waste. The potential release of these wastes into the environment necessitates understanding their interactions with biogeochemical compounds present in nature. Here, we characterize the interactions between the heavy actinides, Am and Cm, and the natural lanthanide-binding protein, lanmodulin (LanM).

View Article and Find Full Text PDF

Uranium contamination of soils and groundwater in the United States represents a significant health risk and will require multiple remediation approaches. Microbial phosphatase activity coupled to the addition of an organic P source has recently been studied as a remediation strategy that provides an extended release of inorganic P (Pi) into U-contaminated sites, resulting in the precipitation of -autunite minerals. Previous laboratory- and field-based biomineralization studies have investigated environments with relatively high U concentrations (>20 μM).

View Article and Find Full Text PDF

Plutonium (Pu) redox and complexation processes in the presence of natural organic matter and associated iron can impact the fate and transport of Pu in the environment. We studied the fate of Pu(IV) in the presence of humic acid (HA) and Fe(II) upon reaction with HO that may be generated by photochemical and other reactions. A portion of Pu(IV) was oxidized to Pu(V/VI), which is primarily ascribed to the generation of reactive intermediates from the oxidation of Fe(II) and Fe(II)-HA complexes by HO.

View Article and Find Full Text PDF

Understanding the biogeochemistry of radionuclides in the environment is essential for effective isolation of nuclear waste in repositories, management of contaminated sites, ensuring long-term protection of our ecosystems, and limiting impacts on human health. Here the authors discuss the extreme complexity of this multidimensional chemistry problem, highlighting the outstanding open questions for the next generations of environmental radiochemists.

View Article and Find Full Text PDF

Current research on radionuclide disposal is mostly conducted in granite, clay, saltstone, or volcanic tuff formations. These rock types are not always available to host a geological repository in every nuclear waste-generating country, but carbonate rocks may serve as a potential alternative. To assess their feasibility, a forced gradient cross-borehole tracer experiment was conducted in a saturated fractured chalk formation.

View Article and Find Full Text PDF

We investigated the influence of natural organic matter (NOM) on the behavior of Pu(V) in the vadose zone through a combination of the field lysimeter and laboratory studies. Well-defined solid sources of NHPu(V)OCO(s) were placed in two 5-L lysimeters containing NOM-amended soil collected from the Savannah River Site (SRS) or unamended vadose zone soil and exposed to 3 years of natural South Carolina, USA, meteorological conditions. Lysimeter soil cores were removed from the field, used in desorption experiments, and characterized using wet chemistry methods and X-ray absorption spectroscopy.

View Article and Find Full Text PDF

Deep fractured rock ecosystems across most of North America have not been studied extensively. However, the US Great Basin, in particular the Nevada National Security Site (NNSS, formerly the Nevada Test Site), has hosted a number of influential subsurface investigations over the years. This investigation focuses on resident microbiota recovered from a hydrogeologically confined aquifer in fractured Paleozoic carbonate rocks at 863 - 923 meters below land surface.

View Article and Find Full Text PDF

The migration of low levels of plutonium has been observed at the Nevada National Security Site (NNSS) and attributed to colloids. To better understand the mechanism(s) of colloid-facilitated transport at this site, we performed flow cell desorption experiments with mineral colloid suspensions produced by hydrothermal alteration of NNSS nuclear melt glass, residual material left behind from nuclear testing. Three different colloid suspensions were used: (1) colloidal material from hydrothermal alteration of nuclear melt glass at 140 °C; (2) at 200 °C; and (3) plutonium sorbed to SWy-1 montmorillonite at room temperature.

View Article and Find Full Text PDF
Article Synopsis
  • Approximately 2.8 tons of plutonium from underground nuclear tests are present in the Nevada National Security Site, primarily trapped in nuclear melt glass, but some migration has occurred through colloid transport.
  • Long-term experiments simulating hydrothermal conditions showed that higher temperatures (200 °C) lead to increased plutonium and colloid concentrations, though these levels are significantly above safe drinking water limits.
  • The findings indicate that while high concentrations of plutonium may occur shortly after nuclear testing, they are expected to decrease over time and are consistent with the low plutonium levels currently measured in NNSS groundwater.
View Article and Find Full Text PDF

The kinetics of ligand exchange between the free oxalate ion, C O , and the bis-oxalato Np complex, [NpO (C O ) ] , in aqueous solution are reported by using C and O NMR spectroscopy methods. Rates of exchange were measured in the pH regime of 6.5-9.

View Article and Find Full Text PDF

Natural organic matter is known to influence the mobility of plutonium (Pu) in the environment via complexation and reduction mechanisms. Hydroxamate siderophores have been specifically implicated due to their strong association with Pu. Hydroxamate siderophores can also break down into di and monohydroxamates and may influence the Pu oxidation state, and thereby its mobility.

View Article and Find Full Text PDF