Publications by authors named "Zartasha Mustansar"

Wound healing is an intricate and ever-evolving phenomenon that involves a series of biological processes and multiple stages. Despite the growing utilization of nanoparticles to enhance wound healing, these approaches often overlook properties like mechanical stability, toxicity, and efficacy. Hence, a multifunctional wound dressing is fabricated using Chitosan-PVA membrane crosslinked with vanillin and reinforced with nano-cellulose and CuO-Ag nanoparticles in this study.

View Article and Find Full Text PDF

Background And Objective: There is still a few studies about the poroelastic model that performed dynamic behaviour, especially for the case of the poroelastic cartilage model. Therefore, this study is aimed to use the poroelastodynamic model to simulate the dynamic behaviour of cartilage.

Methods: The governing equations of the poroelastodynamic model is firstly established.

View Article and Find Full Text PDF

Sphingomyelin (SM) belongs to a class of lipids termed sphingolipids. The disruption in the sphingomyelin signaling pathway is associated with various neurodegenerative disorders. TNF-, a potent pro-inflammatory cytokine generated in response to various neurological disorders like Alzheimer's disease (AD), Parkinson's disease (PD), and Multiple Sclerosis (MS), is an eminent regulator of the sphingomyelin metabolic pathway.

View Article and Find Full Text PDF

This study seeks to investigate the interaction profile of the L5 protein of oncolytic adenovirus with the overexpressed surface receptors of pancreatic cancer. This is an important area of research because pancreatic cancer is one of the most fatal malignancies with a very low patient survival rate. Multiple therapies to date to improve the survival rate are reported; however, they show a comparatively low success rate.

View Article and Find Full Text PDF

Brain is an actuator for control and coordination. When a pathology arises in cranium, it may leave a degenerative, disfiguring and destabilizing impact on brain physiology. However, the leading consequences of the same may vary from case to case.

View Article and Find Full Text PDF

In this paper, a detailed analysis of microwave (MW) scattering from a three-dimensional (3D) anthropomorphic human head model is presented. It is the first time that the finite-element method (FEM) has been deployed to study the MW scattering phenomenon of a 3D realistic head model for brain stroke detection. A major contribution of this paper is to add anatomically more realistic details to the human head model compared with the literature available to date.

View Article and Find Full Text PDF

In this paper, we have presented a microwave scattering analysis from multiple human head models. This study incorporates different levels of detail in the human head models and its effect on microwave scattering phenomenon. Two levels of detail are taken into account; (i) Simplified ellipse shaped head model (ii) Anatomically realistic head model, implemented using 2-D geometry.

View Article and Find Full Text PDF

This paper uses X-ray computed tomography to track the mechanical response of a vertebrate (Barnacle goose) long bone subjected to an axial compressive load, which is increased gradually until failure. A loading rig was mounted in an X-ray computed tomography system so that a time-lapse sequence of three-dimensional (3D) images of the bone's internal (cancellous or trabecular) structure could be recorded during loading. Five distinct types of deformation mechanism were observed in the cancellous part of the bone.

View Article and Find Full Text PDF