Publications by authors named "Zarrin Es'haghi"

Background: Aflatoxin B1 (AFB1), is a potent hepatic carcinogen which causes cancer by inducing DNA changes in the liver cells. Variety of methods have been developed for detection of AFB1 which are based on single mode detection strategy. Fabrication of novel platform which are compatible for multimodal detection of AFB1 provide robust performance for reliable detection of AFB1.

View Article and Find Full Text PDF

Currently, one of the significant environmental problems is the presence of azo dye materials in water sources. In this study, for the first time, a fast and sensitive sample preparation approach using nanoparticle-assisted fabric phase sorptive extraction (NFPSE) followed by high-performance liquid chromatography was examined to remove some azo dyes such as methyl red and sunset yellow from aqueous solutions. Primarily, the significance of several parameters affecting NFPSE, such as fabric type, the kind of sorbent, the number of contacts with sol-gel and the time of contact, was investigated.

View Article and Find Full Text PDF

Background: The development of green chemistry methods involving plant-based nanoparticle synthesis presents an affordable and eco-friendly approach for wastewater treatment and color removal. This study aimed to synthesize ZnO nanoparticles using the sol-gel method with and plants, examining their photocatalytic efficiency for organic dye removal.

Methods: To compare the properties of ZnO nanoparticles, another type of ZnO-NPs was synthesized using the co-precipitation method.

View Article and Find Full Text PDF

Corona Virus Disease 2019 (COVID-19) as the infectious disease caused the pandemic disease around the world through infection by SARS-CoV-2 virus. The common diagnosis approach is Quantitative RT-PCR (qRT-PCR) which is time consuming and labor intensive. In the present study a novel colorimetric aptasensor was developed based on intrinsic catalytic activity of chitosan film embedded with ZnO/CNT (ChF/ZnO/CNT) on 3,3',5,5'-tetramethylbenzidine (TMB) substrate.

View Article and Find Full Text PDF

The main aim of this study is modeling of a continuous biosorption system for the removal of Pb(II) ions in the aqueous conditions using live Dunaliella salina microalgae. The live microalgae can grow in saline water and opens new opportunities in varying the amount and properties of biosorbent. The effects of five parameters, including pH, optical density of algae as a factor indicating the adsorbent dosage, injection time, contact time, and initial concentration of Pb(II), were optimized by means of response surface methodology (RSM) based on the central composite design (CCD).

View Article and Find Full Text PDF

Erlotinib is a potent and highly specific tyrosine kinase inhibitor with the hindering effects on the growth of cancer cells. An electrochemical sensor with the great sensitivity and selectivity was fabricated for determining erlotinib by using a graphite rod electrode modified by the nitrogen-doped graphene quantum dots (N-GQDs) and a ternary nanohybrid comprising copper nanoparticles, polyaniline, along with graphene oxide (N-GQDs/CuNPs-PANI@GO) for the first time. The establishment of PANI and CuNPs was done simultaneously on the GO surface by theoxidative polymerization method.

View Article and Find Full Text PDF

The multi-template molecularly imprinted polymers reinforced with hybrid oxide nanoparticles were developed for the selective separation and determination of the trace level of naproxen (NPX), methocarbamol (MTH), and omeprazole (OMZ) simultaneously from biological and pharmaceutical samples. The polymers were constructed by magnetic core@shell molecularly imprinted polymer nanocomposite (FeO/ZnO/CuO/MWCNT@MIP). An electrochemical sensor has been fabricated for this purpose.

View Article and Find Full Text PDF

This research presents a green synthetic pathway for the preparation of a new biosorbent and eco-friendly extraction process of three phthalate esters: dimethyl phthalate, di-butyl phthalate and benzyl butyl phthalate, from cosmetics and baby care products. Dispersive solid-phase extraction was used based on a new core-shell biomass/sorbent; chitosan-loaded lawsone. The proposed method provides fortunate trapping of phthalate esters in a one-step extraction.

View Article and Find Full Text PDF

Solid-phase microextraction (SPME) is an analytical method for microextraction of analytes, in which the analytes bind to the sorbent on the surface of the SPME fiber. Many types of chemical agents are used as sorbent; however, many of these sorbents cause secondary contamination or are not cost-effective. Here, aqueous extract of Ferula gummosa was evaluated as potential source of sorbent for simultaneous microextraction of morphine and codeine.

View Article and Find Full Text PDF

In this study, the ultrasonic-assisted dispersive solid phase extraction (UA-d-SPE) method coupled to gas chromatography-mass spectrometry (GC-MS) was applied for the analysis of phthalate esters in drinking water and distilled herbal beverages (Rosa, Mentha, Cichorium). A new nanocomposite based on layered double hydroxide supported on graphene oxide was synthesized and modified by sulfonated polyaniline via a simple one-pot in-situ polymerization method. The structure and morphology of the nanocomposite was confirmed by means of complementary techniques: Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, and transmission electron microscopy.

View Article and Find Full Text PDF

Migration of N,N-Bis(2-hydroxyethyl) alkyl(C8-C18)amines from five different polypropylene capsules to Tenax® and coffee powder have been studied. A single step extraction-cleanup procedure using salting out liquid-liquid extraction (SALLE) method followed by ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was applied. The critical parameters on the SALLE procedure such as extracting solvent, extracting volume, sample pH, salt and its concentration were optimized.

View Article and Find Full Text PDF

Introduction: Saffron (Crocus sativus L.) is a well-known spice which is used as the colourant and flavouring agent in food products. Safranal could act as an indicator for saffron grading, authentication and adulteration, as well as for quality evaluation of saffron flavoured products; since it is the main odourant and the most aroma-active compound of saffron.

View Article and Find Full Text PDF

Consumption of food crops contaminated with heavy metals (HMs) is a significant risk factor for human health and safety. We evaluated the health risks of HMs in contaminated food crops irrigated with surface water. Results showed there is a substantial buildup of HMs in rice, collected from the Tajan river basin, Iran.

View Article and Find Full Text PDF

Recently, the presence of endocrine disrupting compounds in the environment has emerged as a global and ubiquitous problem. In this study, a novel synthesis of magnetically carbon nanotube modified with biological polymeric was successfully prepared. The effect of different parameters on the Bisphenol A (BPA) adsorption was studied.

View Article and Find Full Text PDF

This article presents fabric phase sorptive extraction (FPSE) as a simple and effective pre-concentration method for the enrichment of acrylate compounds in different food simulants and subsequent analysis of the extracts by ultra-high-performance liquid chromatography with mass spectrometric detection (UPLC-MS). Acrylate compounds come from acrylic adhesives used commonly for sticking the paper labels on polyethylene terephthalate (PET) bottles and therefore, they may exist in recycled polyethylene terephthalate (rPET). Four acrylates were studied: ethylene glycol dimethacrylate (EGDM), pentaerythritol triacrylate (PETA), triethylene glycol diacrylate (TEGDA) and trimethylolpropane triacrylate (TMPTA).

View Article and Find Full Text PDF

Breast cancer which is the most commonly diagnosed cancer among women; have been known as a serious threat for health and life around the world. So development of an approach for early-stage diagnosis of breast cancer is vital. In this study, we designed a double aptamer-nanoparticle conjugates-based (DANP) complex for specific detection and visualization of MCF-7 cells using Mucin 1 (MUC 1) aptamer-conjugated gold nanoparticles (MUC1 apt - GNPs) and adenosine triphosphate (ATP) aptamer-conjugated CdTe quantum dots (ATP apt-QDs).

View Article and Find Full Text PDF

The objective of this work was to study molecular binding of safranal to whey proteins by taking advantage of headspace solid-phase microextraction combined with gas chromatography (HS-SPME/GC), fluorescence and circular dichroism (CD) spectroscopies, and docking studies. The results of HS-SPME/GC indicated that bovine serum albumin (BSA) had the highest affinity toward safranal, with binding constant of 3.196 × 10 M.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on creating a new solid phase microextraction fiber using carbon nanotubes (CNTs) functionalized with amino acids to extract morphine from urine samples.
  • The researchers confirmed the successful functionalization of CNTs and demonstrated that the fiber can preconcentrate low levels of morphine (as low as 0.25 ppb) effectively.
  • The fiber maintained high extraction efficiency over multiple uses (up to 30 times) and showed promising results for detecting morphine and potentially other drugs in forensic applications.
View Article and Find Full Text PDF

A sensitive electrochemical sensor has been designed for in situ preconcentration and determination of anticancer drugs Capecitabine (CPT) and Erlotinib hydrochloride (ETHC) based on a pencil graphite electrode modified with multivalued carbon nanotube-polyurethane (MWCNT-PUFIX) nanocomposite that was supported with a piece of polypropylene hollow fiber (HF-PGE). The electrochemical behavior of CPT and ETHC on the MWCNT-PUFIX/HF-PGE modified electrode was investigated by differential pulse voltammetry (DPV) techniques and the obtained results confirmed its efficiency for sensing of CPT and ETHC. The synthesized nanocomposite was characterized by infrared spectroscopy and scanning electron microscope.

View Article and Find Full Text PDF

Antimicrobial peptides (AMPs) are best known for their bactericidal properties; however, due to their unique and flexible structures, they have also been proposed as potential selective sorbents for specific molecules. In the present study, we aimed to design and produce a new peptide-based microextraction fiber for preconcentrating morphine in urine samples. The binding of morphine to the peptide was first evaluated by computational simulation using the Molecular Operating Environment (MOE) 2015.

View Article and Find Full Text PDF

A simple, low-cost and sensitive label-free aptasensor assembled with assisting reduced graphene oxide nanosheets as the signal amplifier was fabricated and applied for detecting ultra-low levels of Aflatoxin B1(AFB1) through a nano-bio interaction system. The conditions of different modified glassy carbon electrodes as the base of aptasensor were investigated by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). The performance of the fabricated aptasensor was evaluated by FESEM, HRTEM and AFM images.

View Article and Find Full Text PDF

The simultaneous measurement of the concentration of anticancer drugs with a fast, sensitive and accurate method in biological samples is a challenge for better monitoring of drug therapy and better determine the pharmacokinetics. An electrochemical sensor was developed for the simultaneous determination of anticancer drugs, Ifosfamide (IFO) and Etoposide (ETO) based on pencil graphite electrode modified with Au/Pd@rGO nanocomposite decorated with poly (L-Cysteine). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were utilized to study the properties of the modified electrode.

View Article and Find Full Text PDF

A highly efficient electrochemical sensor for the analysis of anticancer drug 5-fluorouracil (5-FU), is fabricated based on silver nanoparticles-polyaniline nanotube (AgNPs@PANINTs). AgNPs@PANINTs nanocomposite has been synthesized by a simple one-step method. Synthesized AgNPs@PANINTs nanocomposite was studied by Fourier transform infrared spectrometry, Scanning Electron Microscopy and Energy Dispersive X-ray.

View Article and Find Full Text PDF

In this study, a simple and novel kinetic spectrophotometric method has been proposed for the sensitive and highly selective determination of Brilliant Green. The method is based on the interaction of Brilliant Green with Triton X-100 in micellar media at room temperature. As a result of this interaction, the peak wavelength (625 nm) is gradually shifted toward longer wavelength region (634 nm) and more intensive hyper chromic effect has been seen.

View Article and Find Full Text PDF

Flutamide (FLT) is a non-steroidal anti-androgen drug that has a specific anti-androgenic activity so that it is used in the treatment of prostate cancer. FLT may also be used to treat excess androgen levels in women. A sensitive electrochemical sensor based on hyperbranchedpolyglycerol functionalized- graphene oxide developed, using ionic liquid mediated hollow fiber-pencil graphite electrode (HF/HBP-GO/PGE) as a working electrode for determination of an anticancer drug, flutamide (FLT.

View Article and Find Full Text PDF