Publications by authors named "Zarifi M"

. To compare in reproducible and equalized conditions the performance of two independent proton range verification systems based on prompt gamma-ray detectors from two different proton therapy centers..

View Article and Find Full Text PDF

Today's wireless environments, soft robotics, and space applications demand delicate design of devices with tunable performances and simple fabrication processes. Here we show strain-based adjustability of RF/microwave performance by applying frequency-selective patterns of conductive TiCT MXene coatings on low-cost acetate substrates under ambient conditions. The tailored performances were achieved by applying frequency-selective patterns of thin TiCT MXene coatings with high electrical conductivity as a replacement to metal on low-cost flexible acetate substrates under ambient conditions.

View Article and Find Full Text PDF

To fulfil the technical requirements for accreditation to ISO/IEC 17025, the end-to-end validation of all processes associated with standardising Co, including gravimetric source dispensing, primary standardisation by the 4π(LS)β-γ coincidence and live-timed anti-coincidence extrapolation techniques, and impurity determination were performed and documented. Pure-beta-emitting impurities in a Co stock solution were identified. The impact of such impurities on measurement by liquid scintillation counting and comparison in the ESIR are discussed.

View Article and Find Full Text PDF

Unprotected surfaces where a coating has been removed due to erosive wear can catastrophically fail from corrosion, mechanical impingement, or chemical degradation, leading to major safety hazards, financial losses, and even fatalities. As a preventive measure, industries including aviation, marine and renewable energy are actively seeking solutions for the real-time and autonomous monitoring of coating health. This work presents a real-time, non-destructive inspection system for the erosive wear detection of coatings, by leveraging artificial intelligence enabled microwave differential split ring resonator sensors, integrated to a smart, embedded monitoring circuitry.

View Article and Find Full Text PDF

When exposed to specific gases, polymers undergo swelling, leading to physiochemical changes that can significantly affect their performance. Monitoring this swelling phenomenon requires innovative approaches. This study focuses on investigating the real-time resonant microwave behavior of two polydimethylsiloxane (PDMS) structures (solid and porous) in interaction with tetrahydrofuran (THF) and acetone, which are primary swelling agents.

View Article and Find Full Text PDF

The Bureau International des Poids et Mesures (BIPM) is developing a new transfer instrument to extend its centralized services for assessing the international equivalence of radioactive standards to new radionuclides. A liquid scintillation counter using the triple/double coincidence ratio method is being studied and tested in the CCRI(II)-P1.Co-60 pilot study.

View Article and Find Full Text PDF

Microwave communication devices necessitate elements with high electrical conductivity, a property which was traditionally found in metals (e.g., copper).

View Article and Find Full Text PDF

Detection of visible light is a key component in material characterization techniques and often a key component of quality or purity control analyses for health and safety applications. Here in this work, to enable visible light detection at gigahertz frequencies, a planar microwave resonator is integrated with high aspect ratio TiO nanotube (TNT) layer-sensitized CdS coating using the atomic layer deposition (ALD) technique. This unique method of visible light detection with microwave-based sensing improves integration of the light detection devices with digital technology.

View Article and Find Full Text PDF

Ice accretion causes problems in vital industries and has been addressed over the past decades with either passive or active de-icing systems. This work presents a smart, hybrid (passive and active) de-icing system through the combination of a low interfacial toughness coating, printed circuit board heaters, and an ice-detecting microwave sensor. The coating's interfacial toughness with ice is found to be temperature dependent and can be modulated using the embedded heaters.

View Article and Find Full Text PDF

Ultraviolet (UV) sensors are a key component in growing applications such as water quality treatment and environmental monitoring, with considerable interest in their miniaturization and enhanced operation. This work presents a passive gold coplanar waveguide split ring resonator integrated with anodic self-organized TiO nanotube (TNT) membranes with a thickness of 20 μm to provide real-time UV detection. The resonator operated as a one-port device to capture the reflection coefficient () signal, with a center frequency of 16 GHz and a notch amplitude of -88 dB.

View Article and Find Full Text PDF

Gas detection in flexible electronics demands novel materials with superior sensing performance that have high mechanically strength, are flexible, low-cost, and sustainable. We explore a composite sensing nanopaper based on lignocellulosic cellulose nanofibrils (LCNF) as a renewable and mechanically strong substrate that enables the fabrication of flexible, and highly sensitive gas sensors. In the system the hydrophobic lignin covalently bonds to cellulose in the nanofibrils, increasing the nanopaper water-resistance and limiting sensing materials response to humidity.

View Article and Find Full Text PDF

Background: Juxta-apical radiolucency (JAR) has been presented as a radiographic sign, suggestive of the IAN injury through third molar surgery. This study aimed to evaluate the relation of JAR with IAN injury in cone-beam computed tomography (CBCT) images and to determine whether the presence of JAR is related to tooth angulation, proximity to the mandibular canal, position to the IAN, and thinning of the cortical plates.

Methods: Of an initial sample of 545 mandibular third molars, a total of 75 JAR and 75 JAR teeth were evaluated by CBCT.

View Article and Find Full Text PDF

Infection diagnosis and antibiotic susceptibility testing (AST) are pertinent clinical microbiology practices that are in dire need of improvement, due to the inadequacy of current standards in early detection of bacterial response to antibiotics and affordability of contemporarily used methods. This paper presents a novel way to conduct AST which hybridizes disk diffusion AST with microwave resonators for rapid, contactless, and non-invasive sensing and monitoring. In this research, the effect of antibiotic (erythromycin) concentrations on test bacterium, Escherichia coli (E.

View Article and Find Full Text PDF

This paper demonstrates the feasibility of a long-range antenna sensor embedded underneath a liquid repellent fabric to be employed as a wearable sensor in personal protective fabrics. The sensor detects and monitors hazardous aqueous liquids on the outer layer of fabrics, to add an additional layer of safety for professionals working in hazardous environments. A modified patch antenna was designed to include a meandering-shaped resonant structure, which was embedded underneath the fabric.

View Article and Find Full Text PDF

A patch antenna sensor with T-shaped slots operating at 2.378 GHz was developed and investigated for wireless ice and frost detection applications. Detection was performed by monitoring the resonant amplitude and resonant frequency of the transmission coefficient between the antenna sensor and a wide band receiver.

View Article and Find Full Text PDF

Ammonia gas sensors have always received significant attention as robust platforms for emission control, food safety, and monitoring human exhaled breath for the early diagnosis of diseases such as dysfunction of the kidney and liver. This study explores the development of a microwave-based split-ring resonator (SRR) sensor with enhanced sensitivity to detect ammonia gas at low concentrations. The sensor is based on a nanocomposite fabricated by incorporating 10 wt% of graphene oxide (GO) into polyaniline (PANI) via the in-situ polymerization of aniline monomers over the surface of the GO sheets.

View Article and Find Full Text PDF

A microwave resonator array is integrated with liquid metal to select an individual resonator response within a resonator array, enabling simple and accurate analysis for dielectric sensing. Galinstan, a liquid metal, acts as a multiplexer by inducing a capacitive load to the nearby resonator, lowering its resonant frequency, and thereby isolating its resonant response from other resonators in the array. The liquid metal could be positioned within a fluidic channel to be above any of the resonators, which tuned the resonant frequency from 3.

View Article and Find Full Text PDF

Background: Although fibrosis is the main determinant of liver stiffness, other disease-related factors usually disregarded in studies on liver elastography, such as inflammation and cholestasis, may influence liver stiffness.

Objective: To evaluate the accuracy of two-dimensional (2-D) shear wave elastography in assessing liver fibrosis in children with chronic liver disease by controlling for the confounding role of several disease- and patient-related factors.

Materials And Methods: Three disease groups were studied: 1) various chronic liver diseases, 2) autoimmune hepatitis and 3) biliary atresia.

View Article and Find Full Text PDF

A real-time and label-free microstrip sensor capable of detecting and monitoring subsurface growth of Escherichia coli (E. coli) on solid growth media such as Luria-Bertani (LB) agar is presented. The microwave ring resonator was designed to operate at 1.

View Article and Find Full Text PDF

Protective clothing must repel hazardous liquids such as oils, acids, and solvents, which often exhibit low surface tension. The low surface tension liquid repellency of textiles is currently characterized qualitatively, considering only the first thirty seconds of wetting. This study demonstrates that embedded sensors within protective fabrics can more fully characterize liquid repellency while simultaneously detecting the hazardous substance.

View Article and Find Full Text PDF

Ice accumulation on aircraft is known to negatively impact the aerodynamic and mechanical operation, sometimes resulting in catastrophic failure. Recently, microwave resonators have gained interest as durable and reliable frost and ice detectors. Here, a microwave resonator sensor with built-in heating capability patterned into the ground plane was designed, fabricated, and tested to investigate real-time ice and frost growth.

View Article and Find Full Text PDF

Wireless and highly sensitive flexible strain sensors would have widespread application across a number of different fields. Here, the novel combination of two different metamaterials, one mechanical and one electronic, is demonstrated for its potential as such a sensor. An array of split-ring resonators (SRRs) were mounted on a bespoke kirigami sheet.

View Article and Find Full Text PDF

Ammonia is a key compound in a variety of industrial sectors, including automotive, chemical, and food. Its hazardous effects on the environment and human health require the implementation of proper safety guidelines and monitoring techniques. An attractive approach is to add sensing functionality to low-cost wireless communication devices to allow for the monitoring/mapping of the chemical environment across a large area.

View Article and Find Full Text PDF

Microwave resonator sensors are attractive for their contactless and label-free capability of monitoring bacterial growth in liquid media. This paper outlines a new label-free microwave biosensor based on a pair of planar split ring resonators for non-invasive monitoring of bacterial growth on a solid agar media. The sensor is comprised of two split ring resonators with slightly different resonant frequencies for differential operation.

View Article and Find Full Text PDF