Microbial toluene biosynthesis was reported in anoxic lake sediments more than three decades ago, but the enzyme catalyzing this biochemically challenging reaction has never been identified. Here we report the toluene-producing enzyme PhdB, a glycyl radical enzyme of bacterial origin that catalyzes phenylacetate decarboxylation, and its cognate activating enzyme PhdA, a radical S-adenosylmethionine enzyme, discovered in two distinct anoxic microbial communities that produce toluene. The unconventional process of enzyme discovery from a complex microbial community (>300,000 genes), rather than from a microbial isolate, involved metagenomics- and metaproteomics-enabled biochemistry, as well as in vitro confirmation of activity with recombinant enzymes.
View Article and Find Full Text PDFBackground: Treatment of locoregionally advanced penile squamous cell carcinoma (LAPSCC) is challenging. The exact role (in terms of oncological benefit) of extensive surgery is not well established. Moreover, surgery invariably leads to large defects requiring reconstructive surgery.
View Article and Find Full Text PDFAnaerobic bacterial biosynthesis of toluene from phenylacetate was reported more than two decades ago, but the biochemistry underlying this novel metabolism has never been elucidated. Here we report results of in vitro characterization studies of a novel phenylacetate decarboxylase from an anaerobic, sewage-derived enrichment culture that quantitatively produces toluene from phenylacetate; complementary metagenomic and metaproteomic analyses are also presented. Among the noteworthy findings is that this enzyme is not the well-characterized clostridial p-hydroxyphenylacetate decarboxylase (CsdBC).
View Article and Find Full Text PDFEndophytes, the chemical synthesizers inside plants, are the microorganisms having mutualistic relationship with the host plant. They can be used by plants for defense in addition to the production of a wide variety of beneficial bioactive secondary metabolites. There are reports that microbial endophytes mimic the bioactive compounds as produced by the plant itself thus making them a promising source of novel compounds.
View Article and Find Full Text PDFArsenotrophy, growth coupled to autotrophic arsenite oxidation or arsenate respiratory reduction, occurs only in the prokaryotic domain of life. The enzymes responsible for arsenotrophy belong to distinct clades within the DMSO reductase family of molybdenum-containing oxidoreductases: specifically arsenate respiratory reductase, ArrA, and arsenite oxidase, AioA (formerly referred to as AroA and AoxB). A new arsenite oxidase clade, ArxA, represented by the haloalkaliphilic bacterium Alkalilimnicola ehrlichii strain MLHE-1 was also identified in the photosynthetic purple sulfur bacterium Ectothiorhodospira sp.
View Article and Find Full Text PDFIn the present study cultivation-dependent and molecular methods were applied in combination to investigate the arsenite-oxidizing communities in enrichment cultures from arsenic and lead smelter-impacted soils with respect to both 16S rRNA and arsenite oxidase gene diversity. Enrichments with arsenite as the only electron donor resulted in completely different communities than enrichments with yeast extract and the simultaneous presence of arsenite. The lithoautotrophic community appeared to be dominated by Ferrimicrobium-related Actinobacteria, unusual Acidobacteria, Myxobacteria, and α-Proteobacteria but the heterotrophic community comprised many Dokdonella-related γ-Proteobacteria.
View Article and Find Full Text PDFAlthough arsenic is highly toxic to most organisms, certain prokaryotes are known to grow on and respire toxic metalloids of arsenic (i.e., arsenate and arsenite).
View Article and Find Full Text PDFThe tetraheme c-type cytochrome, CymA, is essential for arsenate respiratory reduction in Shewanella sp. ANA-3, a model arsenate reducer. CymA is predicted to mediate electron transfer from quinols to the arsenate respiratory reductase (ArrAB).
View Article and Find Full Text PDFPurpose: To evaluate the results of grade IV cystocele repair by 4-corner bladder and bladder neck suspension technique, using prolene mesh.
Material And Methods: Thirty-one women with a median age of 61 years and severe anterior vaginal wall prolapse (grade IV cystocele) were treated by 4-corner bladder and bladder neck suspension technique, using prolene mesh. Of these, 3 had associated uterine prolapse, rectocele, and enterocele, one had rectocele and enterocele, and 18 had rectocele only.
Salinity effects on microbial community structure and on potential rates of arsenate reduction, arsenite oxidation, sulfate reduction, denitrification, and methanogenesis were examined in sediment slurries from two California soda lakes. We conducted experiments with Mono Lake and Searles Lake sediments over a wide range of salt concentrations (25 to 346 g liter(-1)). With the exception of sulfate reduction, rates of all processes demonstrated an inverse relationship to total salinity.
View Article and Find Full Text PDFSpontaneous renal allograft rupture is one of the most dangerous complications of kidney transplantation, which can result in graft loss. This condition needs immediate surgical intervention. Conservative management has dismal results.
View Article and Find Full Text PDF