Purpose: This study aimed to evaluate and compare the fracture resistance of long-span fixed provisional restorations fabricated using milling, three-dimensional (3D) printing, and conventional methods.
Materials And Methods: Sixty specimens were prepared, divided into four groups of 15 each, corresponding to four fabrication methods: computer-aided design and computer-aided manufacturing (CAD-CAM) milled provisional resins, 3D-printed provisional resins, 3D-printed permanent resins, and conventional bis-acryl restorations reinforced with wire. The specimens underwent a three-point bending test using a universal testing machine to measure fracture resistance, quantified as maximum force (in Newtons).