Publications by authors named "Zareen Abbas"

The role of nanoparticle shape in the interaction and adsorption of organic molecules on the particle surface is an unexplored area. On the other hand, such knowledge is not only vital for a basic understanding of organic molecule interaction with nanoparticle surfaces but also essential for evaluating the cellular uptake of nanoparticles for living organisms. The current study investigates the role of silica nanoparticle shape in the interactions of phthalic acid organic molecules by using molecular dynamics simulations.

View Article and Find Full Text PDF

Cytokines are a large group of small proteins secreted by immune and non-immune cells in response to external stimuli. Much attention has been given to the application of cytokines' detection in early disease diagnosis/monitoring and therapeutic response assessment. To date, a wide range of assays are available for cytokines detection.

View Article and Find Full Text PDF

MOF-235(Fe) and MIL-101(Fe) are two well-studied metal-organic frameworks (MOFs) with dissimilar crystal structures and topologies. Previously reported syntheses of the former show that it has greatly varying surface areas, indicating a lack of phase purity of the products, i.e.

View Article and Find Full Text PDF

With the rapid development of nanotechnology, there is urgent need of characterizing techniques; especially determining the particle size distribution directly from solution. Dynamic light scattering is often used but presence of a small number of aggregates can greatly influence the size distribution. Electrospray scanning mobility particle sizer (ES-SMPS) is rapidly emerging as an alternative method in colloidal science.

View Article and Find Full Text PDF

At present there is a pressing need to find an environmentally friendly grouting material for the construction of tunnels. Silica nanoparticles hold great potential of replacing the organic molecule based grouting materials currently used for this purpose. Chemically, silica nanoparticles are similar to natural silicates which are essential components of rocks and soil.

View Article and Find Full Text PDF

The chemistry and physics of charged interfaces is regulated by the structure of the electrical double layer (EDL). Herein we quantify the average thickness of the Stern layer at the silica (SiO2 ) nanoparticle/aqueous electrolyte interface as a function of NaCl concentration following direct measurement of the nanoparticles' surface potential by X-ray photoelectron spectroscopy (XPS). We find the Stern layer compresses (becomes thinner) as the electrolyte concentration is increased.

View Article and Find Full Text PDF

We show that the surface potential at a water-oxide nanoparticle (NP) interface, long considered an immeasurable direct quantity, can be measured by X-ray photoelectron spectroscopy (XPS) from a liquid microjet. This new method does not require a priori knowledge of the particles' surface structure or of the ion distribution throughout the electrical double layer for its interpretation and can be applied to any colloidal suspension independent of composition, particle size and shape, and solvent. We demonstrate the application for aqueous suspensions of 9 nm colloidal silica (SiO2) at pH 0.

View Article and Find Full Text PDF

Size dependent surface charging and interfacial potential of titanium dioxide (TiO2) nanoparticles are investigated by experimental and theoretical methods. Commercially available TiO2 (P25) nanoparticles were used for surface charge determinations by potentiometric titrations. Anatase particles, 10 and 22 nm in diameter, were synthesized by controlled hydrolysis of TiCl4, and electrophoretic mobilities were determined at a fixed pH but at increasing salt concentrations.

View Article and Find Full Text PDF

Using in-situ X-ray photoelectron spectroscopy at the vapor-water interface, the affinity of nanometer-sized silica colloids to adsorb at the interface is shown to depend on colloid surface charge density. In aqueous suspensions at pH 10 corrected Debye-Hückel theory for surface complexation calculations predict that smaller silica colloids have increased negative surface charge density that originates from enhanced screening of deprotonated silanol groups (≡Si-O(-)) by counterions in the condensed ion layer. The increased negative surface charge density results in an electrostatic repulsion from the vapor-water interface that is seen to a lesser extent for larger particles that have a reduced charge density in the XPS measurements.

View Article and Find Full Text PDF

The effect of ion specificity on the slow aggregation of silica nanoparticles with various initial morphology was investigated with an electrospray-scanning mobility particle sizer (ES-SMPS) and time-resolved synchrotron radiation-small-angle X-ray scattering (SR-SAXS). This combination provides a unique tool to monitor and resolve the early aggregate development in detail. Aggregation was induced by varying the K(2)CO(3) or KCl concentration to obtain a fixed gelation time of ∼40 min, and the results were compared with those obtained in a previous paper (Johnsson et al.

View Article and Find Full Text PDF

The slow aggregation of monodisperse, polydisperse, and preaggregated silica nanoparticles was studied with an electrospray-scanning mobility particle sizer (ES-SMPS) and time-resolved synchrotron radiation-small-angle X-ray scattering (SR-SAXS). Aggregation was induced by varying the NaCl concentration to obtain a fixed gelation time of ∼40 min. The combination of these techniques provides a unique tool to monitor and resolve the aggregate development in detail.

View Article and Find Full Text PDF

An extensive series of Monte Carlo (MC) simulations were performed in order to explore the validity of simple primitive models of electrolyte solutions and in particular the effect of ion size asymmetry on the bulk thermodynamic properties of real salt solutions. Ionic activity and osmotic coefficients were calculated for 1:1, 2:1, and 3:1 electrolytes by using the unrestricted primitive model (UPM); i.e.

View Article and Find Full Text PDF

The slow aggregation process of a concentrated silica dispersion (Bindzil 40/220) in the presence of alkali chlorides (LiCl, NaCl, KCl, RbCl, and CsCl) was investigated by means of mobility measurements. At intervals during the aggregation, particles and aggregates were transferred from the liquid phase to the gas phase via electrospray (ES) and subsequently size selected and counted using a scanning mobility particle sizer (SMPS). This method enables the acquisition of particle and aggregate size distributions with a time resolution of minutes.

View Article and Find Full Text PDF

A theory of surface charging of colloidal particles suspended in an electrolyte solution is presented. The charging at the particle surface is assumed to originate from the adsorption and desorption of protons and is therefore strongly dependent on the acidity of the solution. The surface binding of protons occurs locally at sites of occupancy zero or one that are described by a binding energy u(0) and a three-dimensional vibration of frequency nu.

View Article and Find Full Text PDF

Statistical mechanics has been used to derive a model for the charging of a spherical particle in a salt solution to complement our experimental studies and gain a deeper understanding of the processes involved in surface complexation. Our chosen model goes beyond the equilibrium constants and the Gouy-Chapmann theory currently used in surface complexation models. The proton adsorption is taken to occur at a harmonic potential well on the surface characterized by a frequency v and a well depth u(0).

View Article and Find Full Text PDF

Residues from fluidized bed combustion of municipal solid waste were investigated with respect to their leaching behavior and possible extraction of salts. The total water extractable amounts of Na, K, Ca, Cl(-), Br(-), F(-) and SO(4)(2-) along with the total dissolved solids of bottom, hopper, cyclone and bag house filter ashes were determined. A simple multistage washing process (using water as the extraction medium) was tested in lab scale experiments.

View Article and Find Full Text PDF