The transformation of B cells by Epstein-Barr virus (EBV), into lymphoblastoid cell lines (LCLs) results in the upregulation of STAT1, a key transcription factor in the interferon signalling pathway. Although the mechanism of EBV induction of STAT1 protein expression has been intensively studied, there has been little investigation into the function of STAT1 in EBV-transformed LCLs. In this study, we have implemented a novel strategy to investigate the functional role of STAT1 through the introduction of the simian virus 5 (SV5) V-protein into LCLs by retroviral gene transfer.
View Article and Find Full Text PDFRas mutations occur as an early event in many human tumours of epithelial origin, including thyroid. Using primary human thyroid epithelial cells to model tumour initiation by Ras, we have shown previously that activation of both the MAP kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) effector pathways are necessary, but even when activated together are not sufficient, for Ras-induced proliferation. Here, we show that a third effector, RalGEF, is also activated by Ras in these cells, that this activation is necessary for Ras-induced proliferation, and furthermore that in combination with the MAPK and PI3K effectors, it is able to reproduce the proliferative effect of activated Ras.
View Article and Find Full Text PDF