Publications by authors named "Zara Franklin"

Background: Patients with Alzheimer's Disease (AD) frequently suffer from comorbidities such as type 2 diabetes mellitus (T2DM), accompanied by shared common pathologies such as increased inflammation and impaired glucose homeostasis. Beta-secretase 1 (BACE1), the rate limiting enzyme in AD associated beta-amyloid (Aβ) production, is also implicated in metabolic dysfunction and can increase central and peripheral protein levels of protein tyrosine phosphatase 1B (PTP1B). PTP1B is a validated target in diabetes and obesity, and is a neuroinflammatory regulator involved in degenerative processes.

View Article and Find Full Text PDF

Discerning modification to the amino acid sequence of native glucagon can generate specific glucagon receptor (GCGR) antagonists, that include desHis1Pro4Glu9-glucagon and the acylated form desHis1Pro4Glu9(Lys12PAL)-glucagon. In the current study, we have evaluated the metabolic benefits of once-daily injection of these peptide-based GCGR antagonists for 18 days in insulin-resistant high-fat-fed (HFF) mice with streptozotocin (STZ)-induced insulin deficiency, namely HFF-STZ mice. Administration of desHis1Pro4Glu9-glucagon moderately (P < 0.

View Article and Find Full Text PDF

Ablation of glucagon receptor (GCGR) signalling is a potential treatment option for diabetes, whilst glucagon-like peptide-1 (GLP-1) receptor agonists are clinically approved for both obesity and diabetes. There is a suggestion that GCGR blockade enhances GLP-1 secretion and action, whilst GLP-1 receptor activation is known to inhibit glucagon release, implying potential for positive interactions between both therapeutic avenues. The present study has examined the ability of sustained GCGR antagonism, using desHisProGlu-glucagon, to augment the established benefits of the GLP-1 mimetic, exendin-4, in high fat fed (HFF) mice.

View Article and Find Full Text PDF

Aim: The β-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1) has been identified as the central initiator of amyloid β (Aβ) generation in the brain, the key hallmark of Alzheimer's disease (AD). However, recent studies provided evidence that BACE1 also plays a crucial role in metabolic regulation, and we have shown that neuronal human BACE1 knock-in mice (PLB4) display type 2 diabetes mellitus (T2DM)-like symptoms alongside AD-like impairments. Hence, we here investigated if targeted BACE1 inhibition using LY2886721, an active site BACE1 inhibitor, would improve glucose homeostasis, insulin sensitivity and motor performance in PLB4 mice.

View Article and Find Full Text PDF

Islet inflammation and cytokine production are implicated in pancreatic β-cell dysfunction and diabetes pathogenesis. However, we lack therapeutics to protect the insulin-producing β-cells from inflammatory damage. Closing this clinical gap requires the establishment of new disease models of islet inflammation to facilitate screening efforts aimed at identifying new protective agents.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists are studying ways to help people with diabetes by preventing the death of special cells called beta-cells and making them multiply.
  • They used special drugs to see how these NPY receptors can protect beta-cells from damage and help them work better, testing them on both mice and humans.
  • Their findings suggest that activating these receptors can keep beta-cells safe and healthy, which could be helpful for people with different types of diabetes and for transplanting islet cells.
View Article and Find Full Text PDF

Background: Although in vivo studies have implicated endocannabinoids in metabolic dysfunction, little is known about direct, chronic activation of the endocannabinoid system (ECS) in human islets. Therefore, this study investigated the effects of prolonged exposure to cannabinoid agonists on human islet gene expression and function.

Methods: Human islets were maintained for 2 and 5 days in the absence or presence of CB1r (ACEA) or CB2r (JWH015) agonists.

View Article and Find Full Text PDF

The inhibitory effect of somatostatin (SST) on insulin secretion in vivo is attributed to a direct effect on pancreatic beta cells, but this is inconsistent with some in vitro results in which exogenous SST is ineffective in inhibiting secretion from isolated islets. We therefore investigated whether insulin secretion from the pancreatic islets may partly be regulated by an indirect effect of SST mediated via the CNS. Islet hormone secretion was assessed in vitro by perifusion and static incubations of isolated islets and in vivo by i.

View Article and Find Full Text PDF

Modification to the structure of glucagon has provided a number of glucagon receptor antagonists with possible therapeutic application for diabetes. These novel peptide analogs include desHis(1)Pro(4)Glu(9)-glucagon and desHis(1)Pro(4)Glu(9)(Lys(30)PAL)-glucagon. This study has evaluated the metabolic benefits of once daily administration of desHis(1)Pro(4)Glu(9)-glucagon and desHis(1)Pro(4)Glu(9)(Lys(30)PAL)-glucagon in high fat (45%) fed mice for 15 days.

View Article and Find Full Text PDF

The pathophysiology of diabetes as a disease is characterised by an inability to maintain normal glucose homeostasis. In type 1 diabetes, this is due to autoimmune destruction of the pancreatic β-cells and subsequent lack of insulin production, and in type 2 diabetes it is due to a combination of both insulin resistance and an inability of the β-cells to compensate adequately with increased insulin release. Animal models, in particular genetically modified mice, are increasingly being used to elucidate the mechanisms underlying both type 1 and type 2 diabetes, and as such the ability to study glucose homeostasis in vivo has become an essential tool.

View Article and Find Full Text PDF

Glucagon is a hormone with important effects on blood glucose regulation. This study has utilized the stable glucagon receptor antagonists, desHis¹Pro⁴Glu⁹-glucagon and desHis¹Pro⁴Glu⁹(Lys¹²PAL)-glucagon, to evaluate the effects of sustained inhibition of glucagon receptor signalling in normal mice. Twice-daily injection of either analogue for 10 days had no effect on food intake, body weight and non-fasting plasma glucose concentrations.

View Article and Find Full Text PDF

Glucagon is hormone secreted from the pancreatic alpha-cells that is involved in blood glucose regulation. As such, antagonism of glucagon receptor signalling represents an exciting approach for treating diabetes. To harness these beneficial metabolic effects, two novel glucagon analogues, desHis¹Glu⁹-glucagon-[mPEG] and desHis¹Glu⁹(Lys³⁰PAL)-glucagon, has been evaluated for potential glucagon receptor antagonistic properties.

View Article and Find Full Text PDF