Background/purpose: Angiogenesis is considered a crucial event for dental pulp regeneration. The purpose of this study was to demonstrate neovascularization during coronal pulp regeneration in rat molars using rat dental pulp cells (rDPCs) and to examine whether rDPC-endothelial cell interactions promote proangiogenic capacity .
Materials And Methods: Maxillary first molars of Wistar rats (n = 42) were pulpotomized and rDPCs isolated from incisors were implanted with a porous poly (l-lactic acid) (PLLA) scaffold and hydrogel (Matrigel).
Objectives: Signals from inflamed tooth pulp activate thalamic neurons to evoke central sensitization. We aimed to gain insights into the mechanisms mediating the early phase of pulpal inflammation-induced thalamic neural and glial activation.
Materials And Methods: Pulpal inflammation was induced via the application of mustard oil (MO) to the upper first molar of Wistar rats with local anesthesia (LA) or saline injection.
Introduction: This study aimed to examine the process of reinnervation during coronal pulp tissue regeneration in a rat model in which rat bone marrow mesenchymal stem cells were implanted in pulpotomized molars.
Methods: The maxillary first molars of Wistar rats were pulpotomized, and preformed biodegradable porous poly L-lactic acid scaffolds and hydrogel carrying rat bone marrow mesenchymal stem cells were implanted in the pulp chamber. After 3, 7, and 14 days, the implanted teeth were processed for histologic analysis; immunoperoxidase staining for protein gene product 9.
Objectives: We aimed to investigate whether the mesenchymal stem cell-endothelial cell crosstalk enhances angiogenic factor expression via nuclear factor-kappa B (NF-κB)-dependent mechanisms.
Materials And Methods: Human dermal microvascular endothelial cells (HDMECs) and stem cells from human exfoliated deciduous teeth (SHEDs) were cocultured for 96 hr, in the presence of NF-κB decoy oligodeoxynucleotides (ODNs) or scramble (control). Vascular endothelial cell growth factor (VEGF) and phospho-NF-κB p65 were measured with enzyme-linked immunosorbent assay.
In our previous work, we established an in vivo coronal pulp regeneration model in which biodegradable hydrogel-made scaffolds carrying rat bone marrow mesenchymal stem cells (BM-MSCs) were implanted in the coronal pulp chamber of pulpotomized rat maxillary first molars. In this study, we investigated the in vivo fate of LacZ-labeled BM-MSCs in our coronal pulp regeneration model. BM-MSCs were nucleofected with pVectOZ-LacZ plasmid encoding β-galactosidase 1 day before implantation, and the LacZ-transfected BM-MSCs were implanted into the pulpotomized pulp chamber with biodegradable preformed scaffold-hydrogel constructs.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) are adult stem cells that can be isolated from human and animal sources such as rats. Recently, an in vivo protocol for pulp tissue engineering using implantation of bone marrow MSCs into rat pulpotomized molars was established by our research group. This coronal pulp regeneration model showed almost complete regeneration/healing with dentin bridge formation when the cavity was sealed with mineral trioxide aggregate (MTA) to create a biocompatible seal of the pulp.
View Article and Find Full Text PDF