Striatal trophic activity was assessed in female rhesus monkeys of advancing age rendered hemiparkinsonian by unilateral intracarotid administration of MPTP. Three age groups were analyzed: young adults (8-9.5 years) n=4, middle-aged adults (15-17 years) n=4, and aged adults (21-31 years) n=7.
View Article and Find Full Text PDFIn response to injury and degeneration, astrocytes hypertrophy, extend processes, and increase production of glial fibrillary acidic protein (GFAP), an intermediate filament protein located within their cytoplasm. The present study tested the hypothesis that GFAP expression alters the vulnerability of neurons to excitotoxic and metabolic insult induced by 3-nitroproprionic acid (3-NP), an irreversible inhibitor of mitochondrial complex II activity or the excitotoxin quinolinic acid (QA). In this respect, adult GFAP knockout mice (KO) and wild-type control mice (WT) received unilateral intrastriatal injections of 3-NP (200 nmol/microl) or QA (100 nmol/microl) and were killed 1, 2, or 4 weeks later.
View Article and Find Full Text PDFParkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopamine (DA) neurons of the substantia nigra pars compacta (SNc). Although the exact mechanisms responsible for this cell loss are unclear, emerging evidence suggests the involvement of inflammatory events. In the present study, we characterized the effects of the proinflammatory bacteriotoxin lipopolysaccharide (LPS) on the number of tyrosine hydroxylase immunoreactive (THir) cells (used as an index for DA neurons) in primary mesencephalic cultures.
View Article and Find Full Text PDFWe investigated whether in utero exposure to the Gram(-) bacteriotoxin lipopolysaccharide (LPS) induces dopamine (DA) neuron loss in rats. The proinflammatory cytokine tumor necrosis factor alpha (TNF-alpha) kills DA neurons and is elevated in the brains of patients with Parkinson's disease (PD). LPS is a potent inducer of TNF-alpha, and both are increased in the chorioamniotic environment of women who have bacterial vaginosis (BV) during pregnancy, suggesting that BV might interfere with the normal development of fetal DA neurons.
View Article and Find Full Text PDF