AJR Am J Roentgenol
January 2025
Radiopharmaceutical therapy (RPT) is advancing rapidly and achieving wider clinical application. However, RPT is not yet optimized in practice, as tumor and normal-organ dose estimates and, in turn, dose-response relationships remain poorly defined. Internal dosimetry is evolving to address such issues, transitioning from the estimation of population-average organ-level or tumor-level doses to individualized patient-specific sub-organ or sub-tumor doses.
View Article and Find Full Text PDFRadiolabeled small-molecule DOTA-haptens can be combined with antitumor/anti-DOTA bispecific antibodies (BsAbs) for pretargeted radioimmunotherapy (PRIT). For optimized delivery of the theranostic γ- and β-emitting isotope Lu with DOTA-based PRIT (DOTA-PRIT), bivalent Gemini (DOTA-Bn-thiourea-PEG4-thiourea-Bn-DOTA, aka (3,6,9,12-tetraoxatetradecane-1,14-diyl)bis(DOTA-benzyl thiourea)) was developed. Gemini was synthesized by linking 2 -2-(4-isothiocyanatobenzyl)-DOTA molecules together via a 1,14-diamino-PEG4 linker.
View Article and Find Full Text PDFDiffuse intrinsic pontine glioma (DIPG) is a rare childhood malignancy with poor prognosis. There are no effective treatment options other than external beam therapy. We conducted a pilot, first-in-human study using I-omburtamab imaging and theranostics as a therapeutic approach using a localized convection-enhanced delivery (CED) technique for administering radiolabeled antibody.
View Article and Find Full Text PDFInternal dosimetry evaluates the amount and spatial and temporal distributions of radiation energy deposited in tissue from radionuclides within the body. Historically, nuclear medicine had been largely a diagnostic specialty, and the implicitly performed risk-benefit analyses have been straightforward, with relatively low administered activities yielding important diagnostic information whose benefit far outweighs any potential risk associated with the attendant normal-tissue radiation doses. Although dose estimates based on anatomic models and population-average kinetics in this setting may deviate rather significantly from the actual normal-organ doses for individual patients, the large benefit-to-risk ratios are very forgiving of any such inaccuracies.
View Article and Find Full Text PDFY-microsphere radioembolization has become a well-established treatment option for liver malignancies and is one of the first U.S. Food and Drug Administration-approved unsealed radionuclide brachytherapy devices to incorporate dosimetry-based treatment planning.
View Article and Find Full Text PDFRadioactive seed localization (RSL) provides a precise and efficient method for removing non-palpable breast lesions. It has proven to be a valuable addition to breast surgery, improving perioperative logistics and patient satisfaction. This retrospective review examines the lessons learned from a high-volume cancer center's RSL program after 10 years of practice and over 25 000 cases.
View Article and Find Full Text PDFDrugs with a long residence time at their target sites are often more efficacious in disease treatment. The mechanism, however, behind prolonged retention at the site of action is often difficult to understand for non-covalent agents. In this context, we focus on epichaperome agents, such as zelavespib and icapamespib, which maintain target binding for days despite rapid plasma clearance, minimal retention in non-diseased tissues, and rapid metabolism.
View Article and Find Full Text PDFRadiopharmaceutical therapy is a rapidly growing field for the treatment of cancer due to its high specificity and ability to target individual affected cells. A key component of the pre-clinical development of a new therapeutic radiopharmaceutical is the determination of its time-dependent distribution in tumors, normal tissues, and the whole body in mouse tumor models. Here, we provide an overview of the available instrumentation for the novice in radiation measurement.
View Article and Find Full Text PDFBackground: Potential risk associated with low-dose radiation exposures is often expressed using the effective dose (E) quantity. Other risk-related quantities have been proposed as alternatives. The recently introduced risk index (RI) shares similarities with E but expands the metric to incorporate medical imaging-appropriate risks factors including patient-specific size, age, and sex.
View Article and Find Full Text PDFPreclinical dosimetry is essential for guiding the design of animal radiopharmaceutical biodistribution, imaging, and therapy experiments, evaluating efficacy and/or toxicities in such experiments, ensuring compliance with ethical standards for animal research, and providing reasonable initial estimates of normal-organ doses in humans, required for clinical translation of new radiopharmaceuticals. This MIB guide provides a basic protocol for obtaining preclinical dosimetry estimates with organ-level dosimetry software.
View Article and Find Full Text PDFEpithelial ovarian cancer (EOC) is often asymptomatic and presents clinically in an advanced stage as widespread peritoneal microscopic disease that is generally considered to be surgically incurable. Targeted α-therapy with the α-particle-emitting radionuclide Ac (half-life, 9.92 d) is a high-linear-energy-transfer treatment approach effective for small-volume disease and even single cells.
View Article and Find Full Text PDFPurpose: To evaluate the yttrium-90 (Y) activity distribution in biopsy tissue samples of the treated liver to quantify the dose with higher spatial resolution than positron emission tomography (PET) for accurate investigation of correlations with microscopic biological effects and to evaluate the radiation safety of this procedure.
Materials And Methods: Eighty-six core biopsy specimens were obtained from 18 colorectal liver metastases (CLMs) immediately after Y transarterial radioembolization (TARE) with either resin or glass microspheres using real-time Y PET/CT guidance in 17 patients. A high-resolution micro-computed tomography (micro-CT) scanner was used to image the microspheres in part of the specimens and allow quantification of Y activity directly or by calibrating autoradiography (ARG) images.
In radiopharmaceutical therapy, dosimetry-based treatment planning and response evaluation require accurate estimates of tumor-absorbed dose. Tumor dose estimates are routinely derived using simplistic spherical models, despite the well-established influence of tumor geometry on the dosimetry. Moreover, the degree of disease invasiveness correlates with departure from ideal geometry; malignant lesions often possess lobular, spiculated, or otherwise irregular margins in contrast to the commonly regular or smooth contours characteristic of benign lesions.
View Article and Find Full Text PDFDespite advances by recently approved antibody-drug conjugates in treating advanced gastric cancer patients, substantial limitations remain. Here, several key obstacles are overcome by developing a first-in-class ultrasmall (sub-8-nanometer (nm)) anti-human epidermal growth factor receptor 2 (HER2)-targeting drug-immune conjugate nanoparticle therapy. This multivalent fluorescent core-shell silica nanoparticle bears multiple anti-HER2 single-chain variable fragments (scFv), topoisomerase inhibitors, and deferoxamine moieties.
View Article and Find Full Text PDFPurpose: Intraventricular compartmental radioimmunotherapy (cRIT) with 131-I-omburtamab is a potential therapy for recurrent primary brain tumors that can seed the thecal space. These patients often previously received external beam radiotherapy (EBRT) to a portion or full craniospinal axis (CSI) as part of upfront therapy. Little is known regarding outcomes after re-irradiation as part of multimodality therapy including cRIT.
View Article and Find Full Text PDFRadiolabeled antibody treatment with I-omburtamab, administered intraventricularly into the cerebrospinal fluid (CSF) space, can deliver therapeutic absorbed doses to sites of leptomeningeal disease. Assessment of distribution and radiation dosimetry is a key element in optimizing such treatments. Using a theranostic approach, we performed pretreatment I-omburtamab imaging and dosimetric analysis in patients before therapy.
View Article and Find Full Text PDFBackground: The prognosis for metastatic and recurrent tumors of the central nervous system (CNS) remains dismal, and the need for newer therapeutic targets and modalities is critical. The cell surface glycoprotein B7H3 is expressed on a range of solid tumors with a restricted expression on normal tissues. We hypothesized that compartmental radioimmunotherapy (cRIT) with the anti-B7H3 murine monoclonal antibody omburtamab injected intraventricularly could safely target CNS malignancies.
View Article and Find Full Text PDFThe application of radiopharmaceutical therapy for the treatment of certain diseases is well established, and the field is expanding. New therapeutic radiopharmaceuticals have been developed in recent years, and more are in the research pipeline. Concurrently, there is growing interest in the use of internal dosimetry as a means of personalizing, and potentially optimizing, such therapy for patients.
View Article and Find Full Text PDFPurpose: Despite dramatic growth in the number of small-molecule drugs developed to treat solid tumors, durable therapeutic options to control primary central nervous system malignancies are relatively scarce. Chemotherapeutic agents that appear biologically potent in model systems have often been found to be marginally effective at best when given systemically in clinical trials. This work presents for the first time an ultrasmall (<8 nm) multimodal core-shell silica nanoparticle, Cornell prime dots (or C' dots), for the efficacious treatment of high-grade gliomas.
View Article and Find Full Text PDFBackground: I-123 meta-iodobenzylguanidine (MIBG) imaging has long been employed to noninvasively assess the integrity of human norepinephrine transporter-1 and, hence, myocardial sympathetic innervation. Positron-emitting F-18 meta-fluorobenzylguanidine (MFBG) has recently been developed for potentially superior quantitative characterization. We assessed the feasibility of MFBG imaging of myocardial sympathetic innervation.
View Article and Find Full Text PDFThe aim of this study was to assess the pharmacokinetics, biodistribution, and radiation dosimetry of I-omburtamab administered intraperitoneally in patients with desmoplastic small round cell tumor. Eligible patients diagnosed with desmoplastic small round cell tumor with peritoneal involvement were enrolled in a phase I trial of intraperitoneal radioimmunotherapy with I-omburtamab. After thyroid blockade and before radioimmunotherapy, patients received approximately 74 MBq of I-omburtamab intraperitoneally.
View Article and Find Full Text PDFWith the ongoing dramatic growth of radiopharmaceutical therapy, research and development in internal radiation dosimetry continue to advance both at academic medical centers and in industry. The basic paradigm for patient-specific dosimetry includes administration of a pretreatment tracer activity of the therapeutic radiopharmaceutical; measurement of its time-dependent biodistribution; definition of the pertinent anatomy; integration of the measured time-activity data to derive source-region time-integrated activities; calculation of the tumor, organ-at-risk, and/or whole-body absorbed doses; and prescription of the therapeutic administered activity. This paper provides an overview of the state of the art of patient-specific dosimetry for radiopharmaceutical therapy, including current methods and commercially available software and other resources.
View Article and Find Full Text PDF