In this paper, human step length is estimated based on the wireless channel properties and the received signal strength indicator (RSSI) method. The path loss between two ankles, called the on-ankle path loss, is converted from the RSSI, which is measured by our developed wearable hardware in indoor and outdoor ambulation scenarios. The human walking step length is estimated by a reliable range of RSSI values.
View Article and Find Full Text PDFSensors (Basel)
February 2022
In this paper, human step length was estimated based on wireless channel properties and the received signal strength indicator (RSSI) method. Path loss between two ankles of the person under test was converted from the RSSI, which was measured using our developed wearable transceivers with embedded micro-controllers in four scenarios, namely indoor walking, outdoor walking, indoor jogging, and outdoor jogging. For brevity, we call it on-ankle path loss.
View Article and Find Full Text PDFIn this paper, portable transceivers with micro-controllers and radio frequency modules are developed to measure the received signal strength, path loss, and thus the distance between the human ankles for both indoor and outdoor environments. By comparing the experimental results and the theoretical model, a path loss model between transceivers attached to the subject's ankles is derived. With the developed experimental path loss model, the step length can be measured relatively accurately, despite the imperfections of hardware devices, with the distance errors of a centimeter level.
View Article and Find Full Text PDF