Synaptic dysfunction and loss caused by age-dependent accumulation of synaptotoxic beta amyloid (Abeta) 1-42 oligomers is proposed to underlie cognitive decline in Alzheimer's disease (AD). Alterations in membrane trafficking induced by Abeta oligomers mediates reduction in neuronal surface receptor expression that is the basis for inhibition of electrophysiological measures of synaptic plasticity and thus learning and memory. We have utilized phenotypic screens in mature, in vitro cultures of rat brain cells to identify small molecules which block or prevent the binding and effects of Abeta oligomers.
View Article and Find Full Text PDFThe purpose of the current study was to determine whether a tropical ginger derived compound 1'-acetoxychavicol acetate (ACA), suppresses skin tumor promotion in K5.Stat3C mice. In a two-week study in which wild-type (WT) and K5.
View Article and Find Full Text PDFBackground: Stat3 is a cytokine- and growth factor-inducible transcription factor that regulates cell motility, migration, and invasion under normal and pathological situations, making it a promising target for cancer therapeutics. The hepatocyte growth factor (HGF)/c-met receptor tyrosine kinase signaling pathway is responsible for stimulation of cell motility and invasion, and Stat3 is responsible for at least part of the c-met signal.
Methods: We have stably transfected a human squamous cell carcinoma (SCC) cell line (SRB12-p9) to force the expression of a dominant negative form of Stat3 (S3DN), which we have previously shown to suppress Stat3 activity.
Background: NF-kappaB is a survival signaling transcription factor complex involved in the malignant phenotype of many cancers, including squamous cell carcinomas (SCC). The citrus coumarin, auraptene (AUR), and the ethno-medicinal ginger (Alpinia galanga) phenylpropanoid, 1'-acetoxychavicol acetate (ACA), were previously shown to suppress 12-O-tetradecanoylphorbol-13-acetate (TPA) induced mouse skin tumor promotion. The goal of the present study was to determine whether AUR and ACA are effective either alone or in combination with all-trans retinoic acid (ATRA) for suppressing SCC tumor growth.
View Article and Find Full Text PDFCancer Prev Res (Phila)
October 2009
Squamous cell carcinoma (SCC) of the skin is the most clinically aggressive form of nonmelanoma skin cancer. We have determined the effects of all-trans retinoic acid (ATRA), a naturally occurring chemopreventive retinoid, on signal transducer and activator of transcription 3 (Stat3) signaling during the development of skin SCC. Stat3 is a transcription factor that plays a critical role in cell proliferation and survival, and it is constitutively active in several malignant cell types.
View Article and Find Full Text PDFBackground: Retinoids have been studied extensively for their potential as therapeutic and chemopreventive agents for a variety of cancers, including nonmelanoma skin cancer (NMSC). Despite their use for many years, the mechanism of action of retinoids in the prevention of NMSC is still unclear. In this study we have attempted to understand the chemopreventive mechanism of all-trans retinoic acid (ATRA), a primary biologically active retinoid, in order to more efficiently utilize retinoids in the clinic.
View Article and Find Full Text PDFDespite the use of retinoids in the clinic for many years, their mode of action in the prevention of skin cancer is still unclear. Recent microarray analyses of the chemopreventive effect of all-trans retinoic acid (ATRA), one of the primary naturally occurring biologically active retinoids, in the two-stage mouse skin chemical carcinogenesis model have provided novel insight into their action. Comparison of the gene expression profiles of control skin to skin subjected to the two-stage protocol for 3 wk, with or without ATRA, has shown that approximately half of the genes regulated by 12-o-tetradecanoylphorbol-13-acetate (TPA) are oppositely regulated when ATRA is coadministered with TPA.
View Article and Find Full Text PDF