Disruption of the ruminal epithelium barrier occurs during subacute ruminal acidosis due to low pH, hyper-osmolality, and increased concentrations of lipopolysaccharide and histamine in ruminal fluid. However, the individual roles of lipopolysaccharide and histamine in the process of ruminal epithelium barriers disruption are not clear. The objective of the present investigation was to evaluate the direct effect of lipopolysaccharide and histamine on the barrier function of the ruminal epithelium.
View Article and Find Full Text PDFThe rumen barriers, constituted by the microbial, physical and immune barrier, prevent the transmission of pathogens and toxins to the host tissue in the maintenance of host-microbe homeostasis. Ruminal short-chain fatty acids (SCFAs), which are the important signaling molecules derived from the rumen microbiota, regulate a variety of physiological functions of the rumen. So far, how the ruminal SCFAs regulate the function of rumen barriers is unclear.
View Article and Find Full Text PDFBackground: The ureagenesis plays a central role in the homeostatic control of nitrogen metabolism. This process occurs in the liver, the key metabolic organ in the maintenance of energy homeostasis in the body. To date, the understanding of the influencing factors and regulators of ureagenesis in ruminants is still poor.
View Article and Find Full Text PDFTwo experiments were performed in this study. In Experiment 1, twenty goats were fed with an isonitrogenous diet, containing 28% Non-Fiber Carbohydrate (MNFC group, = 10) or 14% NFC (LNFC group, = 10). In the MNFC group, the ruminal concentration of Short Chain Fatty Acids (SCFA) increased, and pH declined.
View Article and Find Full Text PDFJ Anim Physiol Anim Nutr (Berl)
November 2019
Epidermal growth factor (EGF) and glucagon-like peptides (GLP) modulate the tight junctions (TJ) of the intestinal epithelial barrier (EB) of monogastric animals. This work tried to elucidate whether GLP-1, GLP-2 and EGF can affect the EB of the rumen. Ovine ruminal epithelia were incubated in Ussing chambers for 7 hr with 25 or 250 nM of either GLP-1 or GLP-2 on the serosal side, with 2.
View Article and Find Full Text PDFImproving the yield of rumen microbial protein (MCP) has significant importance in the promotion of animal performance and the reduction of protein feed waste. The amount of energy supplied to rumen microorganisms is an important factor affecting the amount of protein nitrogen incorporated into rumen MCP. Substrate-level phosphorylation (SLP) and electron transport phosphorylation (ETP) are two major mechanisms of energy generation within microbial cells.
View Article and Find Full Text PDFIn our previous study, we demonstrated that butyrate induced ruminal epithelial growth through cyclin D1 upregulation. Here, we investigated the influence of butyrate on the expression of genes associated with cell cycle and apoptosis in rumen epithelium. Goats ( = 24) were given an intra ruminal infusion of sodium butyrate at 0.
View Article and Find Full Text PDFBackground/aims: In animals, the immune and cellular processes of tissue largely depend on the status of local metabolism. However, in the rumen epithelium, how the cellular metabolism affects epithelial immunity, and cellular processes, when the diet is switched from energy-rich to energy-excess status, with regard to animal production and health, have not as yet been reported.
Methods: RNA-seq was applied to compare the biological processes altered by an increase of dietary concentration from 10% to 35% with those altered by an increase of dietary concentration from 35% to 65% (dietary concentrate: the non-grass component in diet, including corn, soya bean meal and additive.
The objective of this study was to investigate whether individual short-chain fatty acids (SCFA) have a different potential to either regulate the formation of the ruminal epithelial barrier (REB) at physiological pH or to damage the REB at acidotic ruminal pH. Ruminal epithelia of sheep were incubated in Ussing chambers on their mucosal side in buffered solutions (pH 6.1 or 5.
View Article and Find Full Text PDFWe used 16S rRNA gene sequencing to examine the posteffects of antibiotic treatment on the structure and metabolism of rumen microbiota. Twelve goats were randomly assigned into two groups, with one group receiving intramuscular streptomycin injection at 40 mg/kg bodyweight daily for 10 days. At 4 weeks after treatment with antibiotic, three goats were randomly selected from each group and switched to a 35% concentrate diet.
View Article and Find Full Text PDFBackground: Diet-derived short-chain fatty acids (SCFAs) in the rumen have broad effects on the health and growth of ruminants. The microbe-G-protein-coupled receptor (GPR) and microbe-histone deacetylase (HDAC) axes might be the major pathway mediating these effects. Here, an integrated approach of transcriptome sequencing and 16S rRNA gene sequencing was applied to investigate the synergetic responses of rumen epithelium and rumen microbiota to the increased intake of dietary non-fiber carbohydrate (NFC) from 15 to 30% in the goat model.
View Article and Find Full Text PDFIt is unknown whether lectins of the rumen epithelium contribute to the recognition of mucosal microbes and activation of tolerogenic cytokines in ruminant animals. We applied an integrated method of RNA-seq and 16S rRNA gene sequencing to investigate alterations of epithelial lectin expression and regulation with a diet-induced reconstruction of the mucosal microbiota in the goat rumen. Our results showed that the diversity and richness of the rumen mucosal microbiota were promoted by the dietary concentrate.
View Article and Find Full Text PDFWe used the goat as a model to study the effects of rumen microbial composition and epithelial TLR signaling on maintaining rumen stability during exogenous butyrate interference. Six cannulated goats received a rapid intraruminal infusion of 0.1 mol/L potassium phosphate buffer with (BT, n = 3) or without (CO, n = 3) 0.
View Article and Find Full Text PDFWhether dietary non-fiber carbohydrate (NFC), a rapid fermentable substance, affects immune homeostasis of rumen through the modulation of interactions of ruminal microbiota and epithelial toll-like receptors () remains unclear. A combination of 16S rRNA amplicon sequencing and quantitative PCRs was applied to study the synergetic responses of ruminal microbiota and epithelial to the dietary NFC switch from 15 to 31% in the goat model. The results showed that the 31% NFC diet caused the radical increases on the richness and diversity of rumen microbiota.
View Article and Find Full Text PDFShort-chain fatty acids (SCFA) regulate cell proliferation and cell apoptosis in gastrointestinal tissue in vitro and in vivo. We have tested the hypothesis that a medium-concentrate intake induces mRNA abundance alterations of genes involved in cell proliferation and cell apoptosis in the rumen epithelium of goats, and that these changes in mRNA abundance are related to ruminal SCFA concentration and ruminal pH. Goats (n=16) were randomly allocated to 2 groups and fed either a low-concentrate (LC) diet (10% concentrate; n=8) or a medium-concentrate (MC) diet (35% concentrate; n=8) in 2 equal portions daily.
View Article and Find Full Text PDFLow sodium content in feed and large amounts of salivary sodium secretion are essential requirements to efficient sodium reabsorption in the dairy cow. It is already known that Na(+)/H(+) exchange (NHE) of the ruminal epithelium plays a key role in Na(+) absorption, and its function is influenced by the presence of short-chain fatty acids (SCFA) and mucosal pH. By contrast, the functional role and regulation of NHE in omasal epithelium have not been completely understood.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
February 2015
Currently, the mechanism(s) responsible for the regulation of urea transporter B (UT-B) expression levels in the epithelium of the rumen remain unclear. We hypothesized that rumen fermentation products affect ruminal UT-B expression. Therefore, the effects of short-chain fatty acids (SCFA), pH, ammonia, and urea on mRNA and protein levels of UT-B were assayed in primary rumen epithelial cell cultures and in rumen epithelium obtained from intact goats.
View Article and Find Full Text PDFWe have tested the hypothesis that increased concentrate intake induces mRNA abundance alterations of genes involved in short-chain fatty acid (SCFA) absorption in the rumen epithelium of goats and these changes of mRNA abundance are probably related to ruminal SCFA concentration and ruminal pH. Goats (n=12) were randomly allocated to 2 groups and fed either a low-concentrate (LC) diet (10% concentrate; n=6) or a medium-concentrate (MC) diet (35% concentrate; n=6) in 2 equal portions daily. Goats were fed separately with their respective diet for 3 wk.
View Article and Find Full Text PDFThe hypothesis that different concentrate : forage ratio diets alter omasal epithelium proliferation of growing goats via cyclins and regulation of the cell cycle was tested. Growing goats were fed with a high concentrate (HC, n = 8) or a low concentrate (LC, n = 8) diet for 42 days. The concentrate : forage ratio was 40:60 in the HC group and 0:100 in the LC group.
View Article and Find Full Text PDFWe tested the hypothesis that the proliferative effects of intraruminal butyrate infusions on the ruminal epithelium are linked to upregulation in cyclin D1 (CCND1), the cyclin-dependent kinase 4 (CDK4), and their possible association with enhanced absorption of short-chain fatty acids (SCFA). Goats (n=23) in 2 experiments (Exp.) were fed 200 g/d concentrate and hay ad libitum.
View Article and Find Full Text PDFButyrate production in the large intestine and ruminant forestomach depends on bacterial butyryl-CoA/acetate-CoA transferase activity and is highest when fermentable fiber and nonstructural carbohydrates are balanced. Gastrointestinal epithelia seem to use butyrate and butyrate-induced endocrine signals to adapt proliferation, apoptosis, and differentiation to the growth of the bacterial community. Butyrate has a potential clinical application in the treatment of inflammatory bowel disease (IBD; ulcerative colitis).
View Article and Find Full Text PDFAn energy-rich diet leads to enhanced ruminal Na(+) absorption, which is associated with elevated plasma insulin-like growth factor 1 (IGF-1) levels and an increased number of IGF-1 receptors in rumen papillae. This study examined the in vitro effect of IGF-1 on Na(+) transport across the rumen epithelium of hay-fed sheep, in which the IGF-1 concentration in plasma is lower than in concentrate-fed animals. At concentrations ranging from 20 to 100 μg l(-1), serosal LR3-IGF-1, a recombinant analogue of IGF-1, rapidly (within 30 min) stimulated the mucosal-to-serosal Na(+) flux (J(ms)Na) and consequently the net Na(+) flux (J(net)Na).
View Article and Find Full Text PDF