In this paper, we numerically and experimentally propose a novel hollow-core microstructured optical fiber (HC-MOF) biosensor for refractive index determination. The sensing mechanism of the proposed sensor is based on photonic bandgap effect and the location of transmission maxima of the fiber, which is strongly depend on the liquid analyte RI filled in the fiber core. The proposed HC-MOF biosensor demonstrates the spectral sensitivity of 5636.
View Article and Find Full Text PDFMicrostructured optical waveguides (MOW) are of great interest for chemical and biological sensing. Due to the high overlap between a guiding light mode and an analyte filling of one or several fiber capillaries, such systems are able to provide strong sensitivity with respect to variations in the refractive index and the thickness of filling materials. Here, we introduce a novel type of functionalized MOWs whose capillaries are coated by a layer-by-layer (LBL) approach, enabling the alternate deposition of silica particles (SiO) at different diameters-300 nm, 420 nm, and 900 nm-and layers of poly(diallyldimethylammonium chloride) (PDDA).
View Article and Find Full Text PDFOptical fibers are widely used in bioimaging systems as flexible endoscopes that are capable of low-invasive penetration inside hollow tissue cavities. Here, we report on the technique that allows magnetic resonance imaging (MRI) of hollow-core microstructured fibers (HC-MFs), which paves the way for combing MRI and optical bioimaging. Our approach is based on layer-by-layer assembly of oppositely charged polyelectrolytes and magnetite nanoparticles on the inner core surface of HC-MFs.
View Article and Find Full Text PDFA sensor based on microstructured waveguides (MWGs) with a hollow core inner surface covered with polyelectrolyte-layer-stabilized gold nanostars was developed for the SERS sensing of dissolved analytes. A polyelectrolyte-layer coating over the inner surface of glass cladding served as a spacer, reducing nonlinear optical effects in the glass near plasmonic hotspots of nanoparticles, as a stabilizing agent for thermodynamically unstable gold nanostars and as an optical coating for the fine-tuning of MWG bandgaps. This approach can be used to construct different kinds of SERS sensors for dissolved analytes, providing conservation, the prevention of coagulation, and the drying of a liquid sample for the time required to record the signal.
View Article and Find Full Text PDFWe introduce a sensitive method that allows one to distinguish positive and negative agglutination reactions used for blood typing and determination of Rh affinity with a high precision. The method is based on the unique properties of photonic crystal waveguides, i.e.
View Article and Find Full Text PDF