Publications by authors named "Zangrossi S"

Background: p53 influences genomic stability, apoptosis, autophagy, response to stress, and DNA damage. New p53-target genes could elucidate mechanisms through which p53 controls cell integrity and response to damage.

Methods: DRAGO (drug-activated gene overexpressed, KIAA0247) was characterized by bioinformatics methods as well as by real-time polymerase chain reaction, chromatin immunoprecipitation and luciferase assays, time-lapse microscopy, and cell viability assays.

View Article and Find Full Text PDF

Bacillus subtilis pnpA gene product, polynucleotide phosphorylase (PNPase), is involved in double-strand break (DSB) repair via homologous recombination (HR) or non-homologous end-joining (NHEJ). RecN is among the first responders to localize at the DNA DSBs, with PNPase facilitating the formation of a discrete RecN focus per nucleoid. PNPase, which co-purifies with RecA and RecN, was able to degrade single-stranded (ss) DNA with a 3' → 5' polarity in the presence of Mn(2+) and low inorganic phosphate (Pi) concentration, or to extend a 3'-OH end in the presence dNDP · Mn(2+).

View Article and Find Full Text PDF

Hematopoietic stem cells (HSC) isolated from umbilical cord blood (UCB) were treated with ionizing radiation (IR) and sensitivity and IR induced checkpoints activation were investigated. No difference in the sensitivity and in the activation of DNA damage pathways was observed between CD133+ HSC and cells derived from them after ex vivo expansion. Chk1 protein was very low in freshly isolated CD133+ cells, and undetectable in ex vivo expanded UCB CD133+ cells.

View Article and Find Full Text PDF

The Escherichia coli polynucleotide phosphorylase (PNPase; encoded by pnp), a phosphorolytic exoribonuclease, posttranscriptionally regulates its own expression at the level of mRNA stability and translation. Its primary transcript is very efficiently processed by RNase III, an endonuclease that makes a staggered double-strand cleavage about in the middle of a long stem-loop in the 5'-untranslated region. The processed pnp mRNA is then rapidly degraded in a PNPase-dependent manner.

View Article and Find Full Text PDF

Polynucleotide phosphorylase (PNPase), an enzyme conserved in bacteria and eukaryotic organelles, processively catalyzes the phosphorolysis of RNA, releasing nucleotide diphosphates, and the reverse polymerization reaction. In Escherichia coli, both reactions are implicated in RNA decay, as addition of either poly(A) or heteropolymeric tails targets RNA to degradation. PNPase may also be associated with the RNA degradosome, a heteromultimeric protein machine that can degrade highly structured RNA.

View Article and Find Full Text PDF

Adaptation of Escherichia coli at low temperature implicates a drastic reprogramming of gene expression patterns. Mechanisms operating downstream of transcription initiation, such as control of transcription termination, mRNA stability and translatability, play a major role in controlling gene expression in the cold acclimation phase. It was previously shown that Rho-dependent transcription termination within pnp, the gene encoding polynucleotide phosphorylase (PNPase), was suppressed in pnp nonsense mutants, whereas it was restored by complementation with wild type allele.

View Article and Find Full Text PDF

The Oct-4 transcription factor, a member of the POU family that is also known as Oct-3 and Oct3/4, is expressed in totipotent embryonic stem cells (ES) and germ cells, and it has a unique role in development and in the determination of pluripotency. ES may have their postnatal counterpart in the adult stem cells, recently described in various mammalian tissues, and Oct-4 expression in putative stem cells purified from adult tissues has been considered a real marker of stemness. In this context, normal mature adult cells would not be expected to show Oct-4 expression.

View Article and Find Full Text PDF

Polynucleotide phosphorylase (PNPase) is a phosphate-dependent 3' to 5' exonuclease widely diffused among bacteria and eukaryotes. The enzyme, a homotrimer, can also be found associated with the endonuclease RNase E and other proteins in a heteromultimeric complex, the RNA degradosome. PNPase negatively controls its own gene (pnp) expression by destabilizing pnp mRNA.

View Article and Find Full Text PDF

The main goal of the study was to identify a novel source of human multipotent cells, overcoming ethical issues involved in embryonic stem cell research and the limited availability of most adult stem cells. Amniotic fluid cells (AFCs) are routinely obtained for prenatal diagnosis and can be expanded in vitro; nevertheless current knowledge about their origin and properties is limited. Twenty samples of AFCs were exposed in culture to adipogenic, osteogenic, neurogenic and myogenic media.

View Article and Find Full Text PDF

Polynucleotide phosphorylase (PNPase), a 3' to 5' exonuclease encoded by pnp, plays a key role in Escherichia coli RNA decay. The enzyme, made of three identical 711 amino acid subunits, may also be assembled in the RNA degradosome, a heteromultimeric complex involved in RNA degradation. PNPase autogenously regulates its expression by promoting the decay of pnp mRNA, supposedly by binding at the 5'-untranslated leader region of an RNase III-processed form of this transcript.

View Article and Find Full Text PDF

Upon cold shock Escherichia coli transiently stops growing and adapts to the new temperature (acclimatization phase). The major physiological effects of cold temperature are a decrease in membrane fluidity and the stabilization of secondary structures of RNA and DNA, which may affect the efficiencies of translation, transcription, and replication. Specific proteins are transiently induced in the acclimatization phase.

View Article and Find Full Text PDF

The genes required for replication of the temperate bacteriophage P4, which are coded by the phage left operon, are expressed from a constitutive promoter (PLE). In the lysogenic state, repression of the P4 replication genes is achieved by premature transcription termination. The leader region of the left operon encodes all the genetic determinants required for prophage immunity, namely: (i) the P4 immunity factor, a short, stable RNA (CI RNA) that is generated by processing of the leader transcript; (ii) two specific target sequences that exhibit complementarity with the CI RNA.

View Article and Find Full Text PDF

Retronphage phi R73 exhibits extensive sequence homology to the satellite bacteriophage P4. Bacteriophage P4 superinfection immunity is elicited by a small RNA (CI RNA) that causes premature transcription termination within the operon coding for the P4 replication functions. This control is exerted via interaction of the CI RNA with two complementary target sites on the untranslated leader RNA of the replication operon.

View Article and Find Full Text PDF

Bacteriophage P4 autonomous replication may result in the lytic cycle or in plasmid maintenance, depending, respectively, on the presence or absence of the helper phage P2 genome in the Escherichia coli host cell. Alternatively, P4 may lysogenize the bacterial host and be maintained in an immune-integrated condition. A key step in the choice between the lytic/plasmid vs.

View Article and Find Full Text PDF

In the phage-plasmid P4, both lysogenic and lytic functions are coded by the same operon. Early after infection the whole operon is transcribed from the constitutive promoter PLE. In the lysogenic condition transcription from PLE terminates prematurely and only the immunity functions, which are proximal to the promoter, are thus expressed.

View Article and Find Full Text PDF

Satellite bacteriophage P4 immunity is encoded within a short DNA region 357 bp long containing the promoter PLE and 275 bp downstream. PLE is active both in the early post-infection phase, when genes necessary for P4 lytic cycle are transcribed from this promoter, and in the lysogenic condition, when expression of the above genes is prevented by prophage immunity. In order to understand how P4 immunity is elicited, we have characterized the transcription pattern during the establishment and the maintenance of the satellite phage P4 lysogenic condition.

View Article and Find Full Text PDF

In the prophage P4, expression of the early genes is prevented by premature termination of transcription from the constitutive promoter PLE. In order to identify the region coding for the immunity determinant, we cloned several fragments of P4 DNA and tested their ability to confer immunity to P4 superinfection. A 357 bp long fragment (P4 8418-8774) is sufficient to confer immunity to an infecting P4 phage and to complement the immunity-defective P4 cl405 mutant, both in the presence and in the absence of the helper phage P2.

View Article and Find Full Text PDF

Infection of Escherichia coli with the satellite virus P4 without its helper bacteriophage P2 leads either to the immune integrated state or to the nonimmune multicopy plasmid condition. We analyzed the transcription pattern of the phage plasmid P4 early and late after infection and during the stable plasmid or lysogenic condition. The early postinfection phase is characterized by the leftward transcription of an operon including the genes cI (P4 immunity) and alpha (replication).

View Article and Find Full Text PDF

After infection of sensitive cells in the absence of a helper phage, the satellite bacteriophage P4 enters a temporary phase of uncommitted replication followed by commitment to either the repressed-integrated condition or the derepressed-high copy number mode of replication. The transient phase and the stable plasmid condition differ from each other in the pattern of protein synthesis, in the rate of P4 DNA replication and in the expression of some gene functions. The regulatory condition characteristic of the P4 plasmid state affects a superinfecting genome, preventing the establishment of the P4 immune condition.

View Article and Find Full Text PDF

The satellite bacteriophage P4, in the presence of a helper phage, can enter either the lytic or the lysogenic cycle. In the absence of the helper, P4 can integrate in the bacterial chromosome. In addition, the partially immunity-insensitive mutant P4 vir1 can be maintained as a plasmid.

View Article and Find Full Text PDF

The gene old of bacteriophage P2 is known to (i) cause interference with phage lambda growth; (ii) kill recB- mutants of Escherichia coli after P2 infection; and (iii) determine increased sensitivity of P2 lysogenic cells to X-ray irradiation. In all of these phenomena, inhibition of protein synthesis occurs. We have isolated bacterial mutants, named pin (P2 interference), able to suppress all of the above-mentioned phenomena caused by the old+ gene product and the concurrent protein synthesis inhibition.

View Article and Find Full Text PDF

Strains of Escherichia coli C or K lysogenic for the non-inducible phage P2 show a lower survival following X-ray irradiation as compared to nonlysogenic strains. This difference in X-ray sensitivity is not accompanied by a significant difference in X-ray induced mutability. The capacity of X-irradiated P2 lysogens to multiply any of a number of unirradiated infecting phages is severely impaired.

View Article and Find Full Text PDF