Targeted Radionuclide Therapy (TRT) is a medical technique exploiting radionuclides to combat cancer growth and spread. TRT requires a supply of radionuclides that are currently produced by either cyclotrons or nuclear research reactors. In this context, the ISOLPHARM project investigates the production of innovative radionuclides for medical applications.
View Article and Find Full Text PDFSPES (Selective Production of Exotic Species) is a second generation facility for the production of radioactive ion beams that is going to be commissioned at the Laboratori Nazionali di Legnaro of INFN at Legnaro, Padua, Italy. Radioactive neutron-rich isotopes are expected to be produced by nuclear fission induced by a 40 MeV, 200 μA primary proton beam impinging on a UC target. The expected reaction rate is about 10 fission/s.
View Article and Find Full Text PDFRadio Pharmaceutical Therapy (RPT) comes forth as a promising technique to treat a wide range of tumors while ensuring low collateral damage to nearby healthy tissues. This kind of cancer therapy exploits the radiation following the decay of a specific radionuclide to deliver a lethal dose to tumor tissues. In the framework of the ISOLPHARM project of INFN, Ag was recently proposed as a promising core of a therapeutic radiopharmaceutical.
View Article and Find Full Text PDFResearch in the field of radiopharmaceuticals is increasingly promoted by the widespread and growing interest in applying nuclear medicine procedures in both disease diagnosis and treatment. The production of radionuclides of medical interest is however a challenging issue. Along with the conventional techniques other innovative approaches are being investigated and, among those, the ISOLPHARM project is being developed at INFN-LNL (Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali di Legnaro).
View Article and Find Full Text PDFWe present possible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron star systems, which are the most promising targets for multi-messenger astronomy.
View Article and Find Full Text PDFWe employ gravitational-wave radiometry to map the stochastic gravitational wave background expected from a variety of contributing mechanisms and test the assumption of isotropy using data from the Advanced Laser Interferometer Gravitational Wave Observatory's (aLIGO) first observing run. We also search for persistent gravitational waves from point sources with only minimal assumptions over the 20-1726 Hz frequency band. Finding no evidence of gravitational waves from either point sources or a stochastic background, we set limits at 90% confidence.
View Article and Find Full Text PDFA wide variety of astrophysical and cosmological sources are expected to contribute to a stochastic gravitational-wave background. Following the observations of GW150914 and GW151226, the rate and mass of coalescing binary black holes appear to be greater than many previous expectations. As a result, the stochastic background from unresolved compact binary coalescences is expected to be particularly loud.
View Article and Find Full Text PDFLiving Rev Relativ
February 2016
We present a possible observing scenario for the Advanced LIGO and Advanced Virgo gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We determine the expected sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron-star systems, which are considered the most promising for multi-messenger astronomy.
View Article and Find Full Text PDFOn September 14, 2015, a gravitational wave signal from a coalescing black hole binary system was observed by the Advanced LIGO detectors. This paper describes the transient noise backgrounds used to determine the significance of the event (designated GW150914) and presents the results of investigations into potential correlated or uncorrelated sources of transient noise in the detectors around the time of the event. The detectors were operating nominally at the time of GW150914.
View Article and Find Full Text PDFWe report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. The signal was initially identified within 70 s by an online matched-filter search targeting binary coalescences.
View Article and Find Full Text PDFOn September 14, 2015, the Laser Interferometer Gravitational-Wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterize the properties of the source and its parameters. The data around the time of the event were analyzed coherently across the LIGO network using a suite of accurate waveform models that describe gravitational waves from a compact binary system in general relativity. GW150914 was produced by a nearly equal mass binary black hole of masses 36_{-4}^{+5}M_{⊙} and 29_{-4}^{+4}M_{⊙}; for each parameter we report the median value and the range of the 90% credible interval.
View Article and Find Full Text PDFThe LIGO detection of GW150914 provides an unprecedented opportunity to study the two-body motion of a compact-object binary in the large-velocity, highly nonlinear regime, and to witness the final merger of the binary and the excitation of uniquely relativistic modes of the gravitational field. We carry out several investigations to determine whether GW150914 is consistent with a binary black-hole merger in general relativity. We find that the final remnant's mass and spin, as determined from the low-frequency (inspiral) and high-frequency (postinspiral) phases of the signal, are mutually consistent with the binary black-hole solution in general relativity.
View Article and Find Full Text PDFOn September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-wave Observatory (LIGO) simultaneously observed the binary black hole merger GW150914. We report the results of a matched-filter search using relativistic models of compact-object binaries that recovered GW150914 as the most significant event during the coincident observations between the two LIGO detectors from September 12 to October 20, 2015. GW150914 was observed with a matched filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203000 years, equivalent to a significance greater than 5.
View Article and Find Full Text PDFFollowing a major upgrade, the two advanced detectors of the Laser Interferometer Gravitational-wave Observatory (LIGO) held their first observation run between September 2015 and January 2016. With a strain sensitivity of 10^{-23}/sqrt[Hz] at 100 Hz, the product of observable volume and measurement time exceeded that of all previous runs within the first 16 days of coincident observation. On September 14, 2015, the Advanced LIGO detectors observed a transient gravitational-wave signal determined to be the coalescence of two black holes [B.
View Article and Find Full Text PDFThe LIGO detection of the gravitational wave transient GW150914, from the inspiral and merger of two black holes with masses ≳30M_{⊙}, suggests a population of binary black holes with relatively high mass. This observation implies that the stochastic gravitational-wave background from binary black holes, created from the incoherent superposition of all the merging binaries in the Universe, could be higher than previously expected. Using the properties of GW150914, we estimate the energy density of such a background from binary black holes.
View Article and Find Full Text PDFOn September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21).
View Article and Find Full Text PDF