Publications by authors named "Zanghi J"

Measurement of anti-drug antibodies (ADA) to assess the incidence of ADA in a clinical trial is a critical step in immunogenicity assessment during the development of a protein therapeutic. We developed novel graphical approaches to illustrate clinical trial ADA data for the PD-L1 inhibitor atezolizumab (Tecentriq) that included a systematic analysis of the impact of the timing of ADA sampling and ADA assay drug tolerance on reported ADA incidence. We found that approaches used across the industry for ADA incidence analysis provide a limited view of immunogenicity in oncology studies, where ADA detection may be confounded by both drug dosage and patient attrition.

View Article and Find Full Text PDF

Introduction: Subcutaneous atezolizumab is approved for the treatment of various solid tumors. Previous results from the IMscin001 study (NCT03735121) revealed that the pharmacokinetics, efficacy, immunogenicity, and safety of subcutaneous and intravenous atezolizumab were consistent (data cutoff: April 26, 2022). We present updated data from this trial (data cutoff: January 16, 2023).

View Article and Find Full Text PDF

Lufotrelvir was designed as a first in class 3CL protease inhibitor to treat COVID-19. Development of lufotrelvir was challenged by its relatively poor stability due to its propensity to epimerize and degrade. Key elements of process development included improvement of the supply routes to the indole and lactam fragments, a Claisen addition to homologate the lactam, and a subsequent phosphorylation reaction to prepare the prodrug as well as identification of a DMSO solvated form of lufotrelvir to enable long-term storage.

View Article and Find Full Text PDF

Background: Atezolizumab intravenous (IV) is approved for the treatment of various solid tumours. To improve treatment convenience and health care efficiencies, a coformulation of atezolizumab and recombinant human hyaluronidase PH20 was developed for subcutaneous (SC) use. Part 2 of IMscin001 (NCT03735121) was a randomised phase III, open-label, multicentre, noninferiority study comparing the drug exposure of atezolizumab SC with atezolizumab IV.

View Article and Find Full Text PDF

A practical method for the efficient and enantioselective preparation of versatile ketones and aldehydes that contain an α-quaternary stereocenter is described. Reactions utilize simple carboxylic acid or ester starting materials, a monodentate chiral phosphine, and afford a variety of aryl, alkenyl, alkynyl, and alkyl-substituted ketone and aldehyde products in 25-94 % yield and 90 : 10 to >99 : 1 enantiomeric ratio. Reactions proceed by acyl substitution with in situ formed chiral allylic nucleophiles, and display selectivity and conversion dependence on a protic additive.

View Article and Find Full Text PDF

Context: Transurethral resection (TUR) is the mainstay for diagnosis, staging, and treatment of both high-grade and low-grade nonmuscle invasive bladder cancer (NMIBC). It is reported that 51% of initial transurethral resection of bladder tumors (iTURBT) does not contain muscle, which results in higher rates of clinical upstaging on repeat transurethral resection (reTUR) and worse oncologic outcomes. Presence of muscle on iTURBT specimen and performing reTUR within 6 weeks in high-risk NMIBC aids in accurate staging and, therefore, guides proper treatment.

View Article and Find Full Text PDF

Bemarituzumab (FPA144) is a first-in-class, humanized, afucosylated immunoglobulin G1 monoclonal antibody (mAb) directed against fibroblast growth factor receptor 2b (FGFR2b) with two mechanisms of action against FGFR2b-overexpressing tumors: inhibition of FGFR2b signaling and enhanced antibody-dependent cell-mediated cytotoxicity (ADCC). Bemarituzumab is being developed as a cancer therapeutic, and we summarize here the key nonclinical data that supported moving it into clinical trials. Bemarituzumab displayed sub-nanomolar cross-species affinity for FGFR2b receptors, with >20-fold enhanced binding affinity to human Fc gamma receptor IIIa compared with the fucosylated version.

View Article and Find Full Text PDF

A general method for the synthesis of secondary homoallylic alcohols containing α-quaternary carbon stereogenic centers in high diastereo- and enantioselectivity (up to >20:1 dr and >99:1 er) is disclosed. Transformations employ readily accessible aldehydes, allylic diboronates, and a chiral copper catalyst and proceed by γ-addition of in situ generated enantioenriched boron-stabilized allylic copper nucleophiles. The catalytic protocol is general for a wide variety of aldehydes as well as a variety of 1,1-allylic diboronic esters.

View Article and Find Full Text PDF

A catalytic diastereo- and enantioselective method for the preparation of complex tertiary homoallylic alcohols containing a vicinal quaternary carbon stereogenic center and a versatile alkenylboronic ester is disclosed. Transformations are promoted by 5 mol % of a readily available copper catalyst bearing a bulky monodentate phosphoramidite ligand, which is essential for attaining both high dr and er. Reactions proceed with a wide variety of ketones and allylic 1,1-diboronate reagents, which enables the efficient preparation of diverse array of molecular scaffolds.

View Article and Find Full Text PDF

A Cu-catalyzed method for the efficient enantio- and diastereoselective synthesis of chiral homoallylic amines bearing a quaternary carbon and an alkenylboron is disclosed. Transformations are promoted by a readily prepared (phosphoramidite)-Cu complex and involve bench-stable γ,γ-disubstituted allyldiborons and benzyl imines; products are obtained in up to 82% yield, >20:1 dr, and >99:1 er. Reactions proceed via stereodefined boron-stabilized allylic Cu species formed by an enantioselective transmetalation.

View Article and Find Full Text PDF

Partial nephrectomy has become the preferred treatment option for small renal masses. In particular, minimally invasive partial nephrectomy (MIPN) using laparoscopic or robotic approaches has shown decreased blood loss, shorter hospital stay, and faster return to normal activity compared to open surgery. However, MIPN still carries risk of postoperative complications including hemorrhage and urine leakage.

View Article and Find Full Text PDF

A single-pot Cu-catalyzed enantio- and diastereoselective tandem hydroboration/borylative cyclization of alkynes with ketones for the synthesis of carbocycles is reported. The reaction proceeds via desymmetrization and generates four contiguous stereocenters, including an all-carbon quaternary center. The method provides rapid access to [6,5]- and [5,5]-bicycles and cyclopentane products.

View Article and Find Full Text PDF

Human (h) pituitary growth hormone (GH) is both physiologically and clinically important. GH reaches its highest circulatory levels in puberty, where it contributes to energy homeostasis and somatogenic growth. GH also helps to maintain tissues and organs and, thus, health and homeostasis.

View Article and Find Full Text PDF

Catalytic enantioselective synthesis of 1-hydroxy-2,3-bisboronate esters through multicomponent borylation/1,2-addition is reported. Catalyst and substrates are readily available, form both a C-B and C-C bond, and generate up to three contiguous stereocenters. The reaction is tolerant of aryl, vinyl, and alkyl aldehydes and ketones in up to 95% yield, >20:1 dr, and 99:1 er.

View Article and Find Full Text PDF

Background: CSF-1 or IL-34 stimulation of CSF1R promotes macrophage differentiation, activation and osteoclastogenesis, and pharmacological inhibition of CSF1R is beneficial in animal models of arthritis. The objective of this study was to determine the relative contributions of CSF-1 and IL-34 signaling to CSF1R in RA.

Methods: CSF-1 and IL-34 were detected by immunohistochemical and digital image analysis in synovial tissue from 15 biological-naïve rheumatoid arthritis (RA) , 15 psoriatic arthritis (PsA) and 7 osteoarthritis (OA) patients .

View Article and Find Full Text PDF

Background: Fibroblast growth factors (FGFs) play important roles in multiple cancers by supporting tumor growth and angiogenesis. FP-1039 (GSK3052230) is a FGF ligand trap consisting of the extracellular domain of FGF receptor 1 (FGFR1) fused with the Fc region of IgG1. FP-1039 binds and neutralizes multiple FGFs that normally bind FGFR1.

View Article and Find Full Text PDF

The fibroblast growth factor (FGF) pathway promotes tumor growth and angiogenesis in many solid tumors. Although there has long been interest in FGF pathway inhibitors, development has been complicated: An effective FGF inhibitor must block the activity of multiple mitogenic FGF ligands but must spare the metabolic hormone FGFs (FGF-19, FGF-21, and FGF-23) to avoid unacceptable toxicity. To achieve these design requirements, we engineered a soluble FGF receptor 1 Fc fusion protein, FP-1039.

View Article and Find Full Text PDF

Using multicistronic expression technology we generated a stable Chinese hamster ovary (CHO) cell line (MG12) expressing a model secreted heterologous glycoprotein, the secreted form of the human placental alkaline phosphatase (SEAP), and bcl-2, best known as an apoptosis inhibitor, in a tetracycline-repressible dicistronic configuration. In batch cultivations in serum-containing medium, MG12 cells reached twice the final viable cell density when Bcl-2 was overexpressed (in the absence oftetracycline) compared to MG12 populations culturedunder tetracycline-containing conditions (bcl-2repressed). However, bcl-2-expressing MG12 cellsshowed no significant retardation of the decline phasecompared to batch cultures in which the dicistronicexpression unit was repressed.

View Article and Find Full Text PDF

We have previously shown that Chinese hamster ovary (CHO) cells capable of growing in medium free of exogenous proteins die by apoptosis during all stages of a batch culture (Zanghi et al., 1999). On the basis of the hypothesis that extracellular death factors might be important in apoptosis under these conditions, we examined the effect of the growth factor inhibitor and antitumor agent suramin on CHO cell growth and apoptosis in serum-free culture.

View Article and Find Full Text PDF

Accumulation of CO(2) in animal cell cultures can be a significant problem during scale-up and production of recombinant glycoprotein biopharmaceuticals. By examining the cell-surface polysialic acid (PSA) content, we show that elevated CO(2) partial pressure (pCO(2)) can alter protein glycosylation. PSA is a high-molecular-weight polymer attached to several complex N-linked oligosaccharides on the neural cell adhesion molecule (NCAM), so that small changes in either core glycosylation or in polysialylation are amplified and easily measured.

View Article and Find Full Text PDF

The development of serum- and protein-free Chinese hamster ovary (CHO) cell cultures is a high priority for the production of biopharmaceuticals. Protein-free competent CHO cells lines have been previously constructed by two different methods-metabolic engineering with cell-cycle regulatory proteins and long-term selective adaptation. Apoptosis was present in both cell lines during protein-free, static-batch culture as a result of nutrient deprivation, and glucose deprivation alone was a potent inducer of apoptosis compared to the depletion of other nutrients such as amino acids.

View Article and Find Full Text PDF

Ammonia in animal cell cultures has been shown to specifically inhibit terminal sialylation of N- and O-linked oligosaccharides of glycoproteins. For example, we have previously shown that as little as 2.5 mM NH4Cl can decrease neural cell adhesion molecule (NCAM) polysialylation in both small cell lung cancer (SCLC) and Chinese hamster ovary (CHO) cells.

View Article and Find Full Text PDF

Ammonia is a major concern in biotechnology because it often limits recombinant protein production by animal cells. Conditions, such as ammonia accumulation, in large-scale production systems can parallel those that develop within fast-growing solid tumors such as small cell lung cancer (SCLC). Ammonia's specific inhibition of the sialylation of secreted glycoproteins is well documented, but it is not known how ammonia affects membrane-bound proteins, nor what role it may have on important glycosylation determinants in cancer.

View Article and Find Full Text PDF

31P-NMR extract spectra of N-417 Small Cell Lung Cancer (SCLC) cells cultured with fluorouridine (FUrd) reveal new peaks with chemical shifts in the diphosphodiester and nucleoside triphosphate regions. These peaks were identified as FUTP, FUDP, FUDP-glucose, FUDP-glucuronate, FUDP-GlcNAc, and FUDP-GalNAc via enzymatic conversion and 19F- and 31P-NMR analysis. Distinct 19F chemical shifts were assigned for FUTP, FUDP, and the FUDP-sugars.

View Article and Find Full Text PDF