Publications by authors named "Zaneta Swiatkowska-Warkocka"

The combination of magnetic and plasmonic properties at the nanoscale promises the development of novel synergetic image-guided therapy strategies for the treatment of cancer and other diseases, but the fabrication of non-contaminated magneto-plasmonic nanocomposites suitable for biological applications is difficult within traditional chemical methods. Here, we describe a methodology based on laser ablation from Fe target in the presence of preliminarily ablated water-dispersed Au nanoparticles (NPs) to synthesize ultrapure bare (ligand-free) core-satellite nanostructures, consisting of large (several tens of nm) Fe-based core decorated by small (mean size 7.5 nm) Au NPs.

View Article and Find Full Text PDF

Novel functionalized (biofunctionalization followed by cisplatin immobilization) FeO@SiO@Au nanoparticles (NPs) were designed. The encapsulation of FeO cores inside continuous SiO shells preserves their initial structure and strong magnetic properties, while the shell surface can be decorated by small Au NPs, and then cisplatin (cPt) can be successfully immobilized on their surface. The fabricated NPs exhibit very strong contrasting properties for magnetic resonance imaging (MRI).

View Article and Find Full Text PDF

Submicrometre spherical particles made of Au and Fe can be fabricated by pulsed-laser melting in liquid (PLML) using a mixture of Au and iron oxide nanoparticles as the raw particles dispersed in ethanol, although the detailed formation mechanism has not yet been clarified. Using a 355 nm pulsed laser to avoid extreme temperature difference between two different raw particles during laser irradiation and an Fe₂O₃ raw nanoparticle colloidal solution as an iron source to promote the aggregation of Au and Fe₂O₃ nanoparticles, we performed intensive characterization of the products and clarified the formation mechanism of Au-Fe composite submicrometre spherical particles. Because of the above two measures (Fe₂O₃ raw nanoparticle and 355 nm pulsed laser), the products-whether the particles are phase-separated or homogeneous alloys-basically follow the phase diagram.

View Article and Find Full Text PDF

We present NiO/Ni composite particles with face-centered cubic (fcc) structure prepared by a pulsed laser irradiation of NiO nanoparticles dispersed in liquid. The sizes of particles and the Ni content in NiO/Ni composites were controlled by tuning the laser parameters, such as laser fluence and irradiation time. We found that the weight fraction of Ni has a significant impact on magnetic properties of composite particles.

View Article and Find Full Text PDF

This paper presents a facile and flexible synthesis platform for various 3D porous gold-iron nanostructures based on selective laser heating of colloidal nanoparticles and selective acid treatment. The presented approach allows to create porous gold-based nanostructures with different morphologies. In addition, for the first time, our studies indicate that various nanoarchitectures (brain-like, flower-like, cage-like, or raspberry-like structures) can be obtained by varying the experimental conditions such as size of Au and Fe3O4 nanoparticles, solvent, laser fluence, and irradiation time.

View Article and Find Full Text PDF

The generation of nanoalloys of immiscible metals is still a challenge using conventional methods. However, because these materials are currently attracting much attention, alternative methods are needed. In this article, we demonstrate a simple but powerful strategy for the generation of a new metastable alloy of immiscible metals.

View Article and Find Full Text PDF

We report the synthesis of Au-based submicrometer-sized spherical particles with uniform morphology/size and integrated porosity-magnetic property in a single particles. The particles are synthesized by a two-step process: (a) selective pulsed laser heating of colloidal nanoparticles to form particles with Au-rich core and Fe-rich shell and (b) acid treatment which leads to formation of porous architecture on particle surface. The simple, fast, inexpensive technique that is proposed demonstrates very promising perspectives for synthesis of composite particles.

View Article and Find Full Text PDF

The development of a general method to fabricate spherical semiconductor and metal particles advances their promising electrical, optical, magnetic, plasmonic, thermoelectric, and optoelectric applications. Herein, by using CuO as an example, we systematically demonstrate a general bottom-up laser processing technique for the synthesis of submicrometer semiconductor and metal colloidal spheres, in which the unique selective pulsed heating assures the formation of spherical particles. Importantly, we can easily control the size and phase of resultant colloidal spheres by simply tuning the input laser fluence.

View Article and Find Full Text PDF

Spherical iron oxide nanocomposite particles composed of magnetite and wustite have been successfully synthesized using a novel method of pulsed laser irradiation in ethyl acetate. Both the size and the composition of nanocomposite particles are controlled by laser irradiation condition. Through tuning the laser fluence, the Fe3O4/FeO phase ratio can be precisely controlled, and the magnetic properties of final products can also be regulated.

View Article and Find Full Text PDF