Unlabelled: Exercise is firmly established as a key contributor to overall well-being and is frequently employed as a therapeutic approach to mitigate various health conditions. One pivotal aspect of the impact of exercise lies in the systemic transcriptional response, which underpins its beneficial adaptations. While extensive research has been devoted to understanding the transcriptional response to exercise, our knowledge of the protein constituents of nuclear processes that accompany gene expression in skeletal muscle remains largely elusive.
View Article and Find Full Text PDFMetallo-polyelectrolytes are versatile materials for applications like filtration, biomedical devices, and sensors, due to their metal-organic synergy. Their dynamic and reversible electrostatic interactions offer high ionic conductivity, self-healing, and tunable mechanical properties. However, the knowledge gap between molecular-level dynamic bonds and continuum-level material properties persists, largely due to limited fabrication methods and a lack of theoretical design frameworks.
View Article and Find Full Text PDFCysteine proteases comprise an important class of drug targets, especially for infectious diseases such as Chagas disease (cruzain) and COVID-19 (3CL protease, cathepsin L). Peptide aldehydes have proven to be potent inhibitors for all of these proteases. However, the intrinsic, high electrophilicity of the aldehyde group is associated with safety concerns and metabolic instability, limiting the use of aldehyde inhibitors as drugs.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
May 2022
SignificanceThe exploration of gold-based colorants in glass and glazes led Nobel Laureate Richard Zsigmondy to the study of colloids, and to the development, with Henry Siedentopf, of the earliest microscopes capable of resolving such small length scales. Zsigmondy's studies were preceded by alchemical investigations starting in the 17th century that yielded the gold-based Purple of Cassius, and experiments in the early 18th century resulting in an unusual purple iridescent porcelain overglaze, called Böttger luster, at the Meissen Manufactory. We discuss the first nano-scale characterization of Böttger luster, its successful replication, and propose an explanation for its optical properties based on the physics of scattering and interference of nanoparticle arrays.
View Article and Find Full Text PDFBy repurposing DNICs designed for other medicinal purposes, the possibility of protease inhibition was investigated in silico using AutoDock 4.2.6 (AD4) and in vitro via a FRET protease assay.
View Article and Find Full Text PDFThree-dimensional (3D) multicomponent metal oxides with complex architectures could enable previously impossible energy storage devices, particularly lithium-ion battery (LIB) electrodes with fully controllable form factors. Existing additive manufacturing approaches for fabricating 3D multicomponent metal oxides rely on particle-based or organic-inorganic binders, which are limited in their resolution and chemical composition, respectively. In this work, aqueous metal salt solutions are used as metal precursors to circumvent these limitations, and provide a platform for 3D printing multicomponent metal oxides.
View Article and Find Full Text PDFHost-cell cysteine proteases play an essential role in the processing of the viral spike protein of SARS coronaviruses. K777, an irreversible, covalent inactivator of cysteine proteases that has recently completed phase 1 clinical trials, reduced SARS-CoV-2 viral infectivity in several host cells: Vero E6 (EC< 74 nM), HeLa/ACE2 (4 nM), Caco-2 (EC = 4.3 μM), and A549/ACE2 (<80 nM).
View Article and Find Full Text PDFK777 is a di-peptide analog that contains an electrophilic vinyl-sulfone moiety and is a potent, covalent inactivator of cathepsins. Vero E6, HeLa/ACE2, Caco-2, A549/ACE2, and Calu-3, cells were exposed to SARS-CoV-2, and then treated with K777. K777 reduced viral infectivity with EC50 values of inhibition of viral infection of: 74 nM for Vero E6, <80 nM for A549/ACE2, and 4 nM for HeLa/ACE2 cells.
View Article and Find Full Text PDFYcjR from K-12 MG1655 catalyzes the manganese-dependent reversible epimerization of 3-keto-α-d-gulosides to the corresponding 3-keto-α-d-glucosides as a part of a proposed catabolic pathway for the transformation of d-gulosides to d-glucosides. The three-dimensional structure of the manganese-bound enzyme was determined by X-ray crystallography. The divalent manganese ion is coordinated to the enzyme by ligation to Glu-146, Asp-179, His-205, and Glu-240.
View Article and Find Full Text PDFThe leading cause of bacterial gastroenteritis, Campylobacter jejuni, is a Gram-negative pathogen that contains a unique O-methyl phosphoramidate (MeOPN) on its capsular polysaccharide. Previously, MeOPN has been linked to the evasion of host immune responses and serum resistance. Despite the involvement of MeOPN in pathogenicity, the complete biosynthesis of this modification is unknown; however, the first four enzymatic steps have been elucidated.
View Article and Find Full Text PDFCampylobacter jejuni, a leading cause of gastroenteritis worldwide, has a unique O-methyl phosphoramidate (MeOPN) moiety attached to its capsular polysaccharide. Investigations into the biological role of MeOPN have revealed that it contributes to the pathogenicity of C. jejuni, and this modification is important for the colonization of C.
View Article and Find Full Text PDFCampylobacter jejuni, a leading cause of gastroenteritis, produces a capsular polysaccharide that is derivatized with a unique O-methyl phosphoramidate (MeOPN) modification. This modification contributes to serum resistance and invasion of epithelial cells. Previously, the first three biosynthetic steps for the formation of MeOPN were elucidated.
View Article and Find Full Text PDFCampylobacter jejuni is a pathogenic Gram-negative bacterium and a leading cause of food-borne gastroenteritis. C. jejuni produces a capsular polysaccharide (CPS) that contains a unique O-methyl phosphoramidate modification (MeOPN).
View Article and Find Full Text PDFBacterial capsular polysaccharides (CPS) are complex carbohydrate structures that play a role in the overall fitness of the organism. Campylobacter jejuni, known for being a major cause of bacterial gastroenteritis worldwide, produces a CPS with a unique O-methyl phosphoramidate (MeOPN) modification on specific sugar residues. The formation of P-N bonds in nature is relatively rare, and the pathway for the assembly of the phosphoramidate moiety in the CPS of C.
View Article and Find Full Text PDF